三、解答題
11.(2013•茂名)如圖,在▱ABCD 中,點(diǎn)E是AB邊的中點(diǎn),DE與CB的延長(zhǎng)線交于點(diǎn)F.[來
(1)求證:△ADE≌△BFE;
(2)若DF平分∠ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.
11.解:(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC.
又∵點(diǎn)F在CB的延長(zhǎng)線上,
∴AD∥CF,
∴∠1=∠2.
∵點(diǎn)E是AB邊的中點(diǎn),
∴AE=BE.
∵在△ADE與△BFE中,
,
∴△ADE≌△BFE(AAS);
(2)解:CE⊥DF.理由如下:
如圖,連接CE.
由(1)知,△ADE≌△BFE,
∴DE=FE,即點(diǎn)E是DF的中點(diǎn),∠1=∠2.
∵DF平分∠ADC,
∴∠1=∠3,
∴∠3=∠2,
∴CD=CF,
∴CE⊥DF.
12.(2013•白銀)如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AF=BD,連接BF.
(1)BD與CD有什么數(shù)量關(guān)系,并說明理由;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形AFBD是矩形?并說明理由.