10.(2014•濟(jì)寧第21題9分)閱讀材料:
已知,如圖(1),在面積為S的△ABC中,BC=a,AC=b,AB=c,內(nèi)切圓O的半徑為r.連接OA、OB、OC,△ABC被劃分為三個(gè)小三角形.
∵S=S△OBC+S△OAC+S△OAB= BC•r+ AC•r+ AB•r= (a+b+c)r.
∴r= .
(1)類比推理:若面積為S的四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓),如圖(2),各邊長分別為AB=a,BC=b,CD=c,AD=d,求四邊形的內(nèi)切圓半徑r;
(2)理解應(yīng)用:如圖(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1與⊙O2分別為△ABD與△BCD的內(nèi)切圓,設(shè)它們的半徑分別為r1和r2,求 的值.
考點(diǎn): 圓的綜合題.
分析: (1)已知已給出示例,我們仿照例子,連接OA,OB,OC,OD,則四邊形被分為四個(gè)小三角形,且每個(gè)三角形都以內(nèi)切圓半徑為高,以四邊形各邊作底,這與題目情形類似.仿照證明過程,r易得.
(2)(1)中已告訴我們內(nèi)切圓半徑的求法,如是我們?cè)傧啾燃吹媒Y(jié)果.但求內(nèi)切圓半徑需首先知道三角形各邊邊長,根據(jù)等腰梯形性質(zhì),過點(diǎn)D作AB垂線,進(jìn)一步易得BD的長,則r1、r2、 易得.
解答: 解:(1)如圖2,連接OA、OB、OC、OD.
∵S=S△AOB+S△BOC+S△COD+S△AOD= + + + = ,
∴r= .
(2)如圖3,過點(diǎn)D作DE⊥AB于E,
∵梯形ABCD為等腰梯形,
∴AE= = =5,
∴EB=AB﹣AE=21﹣5=16.
在Rt△AED中,
∵AD=13,AE=5,
∴DE=12,
∴DB= =20.
∵S△ABD= = =126,
S△CDB= = =66,
∴ = = = .
點(diǎn)評(píng): 本題考查了學(xué)生的學(xué)習(xí)、理解、創(chuàng)新新知識(shí)的能力,同時(shí)考查了解直角三角形及等腰梯形等相關(guān)知識(shí).這類創(chuàng)新性題目已經(jīng)成為新課標(biāo)熱衷的考點(diǎn),是一道值得練習(xí)的基礎(chǔ)題,同時(shí)要求學(xué)生在日常的學(xué)習(xí)中要注重自我學(xué)習(xí)能力的培養(yǎng).
11. ( 2014•安徽省,第22題12分)若兩個(gè)二次函數(shù)圖象的頂點(diǎn)、開口方向都相同,則稱這兩個(gè)二次函數(shù)為“同簇二次函數(shù)”.
(1)請(qǐng)寫出兩個(gè)為“同簇二次函數(shù)”的函數(shù);
(2)已知關(guān)于x的二次函數(shù)y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的圖象經(jīng)過點(diǎn)A(1,1),若y1+y2與y1為“同簇二次函數(shù)”,求函數(shù)y2的表達(dá)式,并求出當(dāng)0≤x≤3時(shí),y2的最大值.
考點(diǎn): 二次函數(shù)的性質(zhì);二次函數(shù)的最值.菁優(yōu)網(wǎng)
專題: 新定義.
分析: (1)只需任選一個(gè)點(diǎn)作為頂點(diǎn),同號(hào)兩數(shù)作為二次項(xiàng)的系數(shù),用頂點(diǎn)式表示兩個(gè)為“同簇二次函數(shù)”的函數(shù)表達(dá)式即可.
(2)由y1的圖象經(jīng)過點(diǎn)A(1,1)可以求出m的值,然后根據(jù)y1+y2與y1為“同簇二次函數(shù)”就可以求出函數(shù)y2的表達(dá)式,然后將函數(shù)y2的表達(dá)式轉(zhuǎn)化為頂點(diǎn)式,在利用二次函數(shù)的性質(zhì)就可以解決問題.
解答: 解:(1)設(shè)頂點(diǎn)為(h,k)的二次函數(shù)的關(guān)系式為y=a(x﹣h)2+k,
當(dāng)a=2,h=3,k=4時(shí),
二次函數(shù)的關(guān)系式為y=2(x﹣3)2+4.
∵2>0,
∴該二次函數(shù)圖象的開口向上.
當(dāng)a=3,h=3,k=4時(shí),
二次函數(shù)的關(guān)系式為y=3(x﹣3)2+4.
∵3>0,
∴該二次函數(shù)圖象的開口向上.
∵兩個(gè)函數(shù)y=2(x﹣3)2+4與y=3(x﹣3)2+4頂點(diǎn)相同,開口都向上,
∴兩個(gè)函數(shù)y=2(x﹣3)2+4與y=3(x﹣3)2+4是“同簇二次函數(shù)”.
∴符合要求的兩個(gè)“同簇二次函數(shù)”可以為:y=2(x﹣3)2+4與y=3(x﹣3)2+4.
(2)∵y1的圖象經(jīng)過點(diǎn)A(1,1),
∴2×12﹣4×m×1+2m2+1=1.
整理得:m2﹣2m+1=0.
解得:m1=m2=1.
∴y1=2x2﹣4x+3
=2(x﹣1)2+1.
∴y1+y2=2x2﹣4x+3+ax2+bx+5
=(a+2)x2+(b﹣4)x+8
∵y1+y2與y1為“同簇二次函數(shù)”,
∴y1+y2=(a+2)(x﹣1)2+1
=(a+2)x2﹣2(a+2)x+(a+2)+1.
其中a+2>0,即a>﹣2.
∴ .
解得: .
∴函數(shù)y2的表達(dá)式為:y2=5x2﹣10x+5.
∴y2=5x2﹣10x+5
=5(x﹣1)2.
∴函數(shù)y2的圖象的對(duì)稱軸為x=1.
∵5>0,
∴函數(shù)y2的圖象開口向上.
、佼(dāng)0≤x≤1時(shí),
∵函數(shù)y2的圖象開口向上,
∴y2隨x的增大而減小.
∴當(dāng)x=0時(shí),y2取最大值,
最大值為5(0﹣1)2=5.
、诋(dāng)1 ∵函數(shù)y2的圖象開口向上, ∴y2隨x的增大而增大. ∴當(dāng)x=3時(shí),y2取最大值, 最大值為5(3﹣1)2=20. 綜上所述:當(dāng)0≤x≤3時(shí),y2的最大值為20. 點(diǎn)評(píng): 本題考查了求二次函數(shù)表達(dá)式以及二次函數(shù)一般式與頂點(diǎn)式之間相互轉(zhuǎn)化,考查了二次函數(shù)的性質(zhì)(開口方向、增減性),考查了分類討論的思想,考查了閱讀理解能力.而對(duì)新定義的正確理解和分類討論是解決第二小題的關(guān)鍵.