华南俳烁实业有限公司

考試首頁 | 考試用書 | 培訓(xùn)課程 | 模擬考場(chǎng)  
  當(dāng)前位置: 中華考試網(wǎng) >> 中考 >> 中考數(shù)學(xué) >> 數(shù)學(xué)模擬題 >> 文章內(nèi)容
  

2015年四川中考數(shù)學(xué)考前必做專題試題—圖表信息題_第6頁

來源:中華考試網(wǎng)收藏本頁   【 】  [ 2015年3月19日 ]

  10.(2014•濟(jì)寧第21題9分)閱讀材料:

  已知,如圖(1),在面積為S的△ABC中,BC=a,AC=b,AB=c,內(nèi)切圓O的半徑為r.連接OA、OB、OC,△ABC被劃分為三個(gè)小三角形.

  ∵S=S△OBC+S△OAC+S△OAB= BC•r+ AC•r+ AB•r= (a+b+c)r.

  ∴r= .

  (1)類比推理:若面積為S的四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓),如圖(2),各邊長分別為AB=a,BC=b,CD=c,AD=d,求四邊形的內(nèi)切圓半徑r;

  (2)理解應(yīng)用:如圖(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1與⊙O2分別為△ABD與△BCD的內(nèi)切圓,設(shè)它們的半徑分別為r1和r2,求 的值.

  考點(diǎn): 圓的綜合題.

  分析: (1)已知已給出示例,我們仿照例子,連接OA,OB,OC,OD,則四邊形被分為四個(gè)小三角形,且每個(gè)三角形都以內(nèi)切圓半徑為高,以四邊形各邊作底,這與題目情形類似.仿照證明過程,r易得.

  (2)(1)中已告訴我們內(nèi)切圓半徑的求法,如是我們?cè)傧啾燃吹媒Y(jié)果.但求內(nèi)切圓半徑需首先知道三角形各邊邊長,根據(jù)等腰梯形性質(zhì),過點(diǎn)D作AB垂線,進(jìn)一步易得BD的長,則r1、r2、 易得.

  解答: 解:(1)如圖2,連接OA、OB、OC、OD.

  ∵S=S△AOB+S△BOC+S△COD+S△AOD= + + + = ,

  ∴r= .

  (2)如圖3,過點(diǎn)D作DE⊥AB于E,

  ∵梯形ABCD為等腰梯形,

  ∴AE= = =5,

  ∴EB=AB﹣AE=21﹣5=16.

  在Rt△AED中,

  ∵AD=13,AE=5,

  ∴DE=12,

  ∴DB= =20.

  ∵S△ABD= = =126,

  S△CDB= = =66,

  ∴ = = = .

  點(diǎn)評(píng): 本題考查了學(xué)生的學(xué)習(xí)、理解、創(chuàng)新新知識(shí)的能力,同時(shí)考查了解直角三角形及等腰梯形等相關(guān)知識(shí).這類創(chuàng)新性題目已經(jīng)成為新課標(biāo)熱衷的考點(diǎn),是一道值得練習(xí)的基礎(chǔ)題,同時(shí)要求學(xué)生在日常的學(xué)習(xí)中要注重自我學(xué)習(xí)能力的培養(yǎng).

  11. ( 2014•安徽省,第22題12分)若兩個(gè)二次函數(shù)圖象的頂點(diǎn)、開口方向都相同,則稱這兩個(gè)二次函數(shù)為“同簇二次函數(shù)”.

  (1)請(qǐng)寫出兩個(gè)為“同簇二次函數(shù)”的函數(shù);

  (2)已知關(guān)于x的二次函數(shù)y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的圖象經(jīng)過點(diǎn)A(1,1),若y1+y2與y1為“同簇二次函數(shù)”,求函數(shù)y2的表達(dá)式,并求出當(dāng)0≤x≤3時(shí),y2的最大值.

  考點(diǎn): 二次函數(shù)的性質(zhì);二次函數(shù)的最值.菁優(yōu)網(wǎng)

  專題: 新定義.

  分析: (1)只需任選一個(gè)點(diǎn)作為頂點(diǎn),同號(hào)兩數(shù)作為二次項(xiàng)的系數(shù),用頂點(diǎn)式表示兩個(gè)為“同簇二次函數(shù)”的函數(shù)表達(dá)式即可.

  (2)由y1的圖象經(jīng)過點(diǎn)A(1,1)可以求出m的值,然后根據(jù)y1+y2與y1為“同簇二次函數(shù)”就可以求出函數(shù)y2的表達(dá)式,然后將函數(shù)y2的表達(dá)式轉(zhuǎn)化為頂點(diǎn)式,在利用二次函數(shù)的性質(zhì)就可以解決問題.

  解答: 解:(1)設(shè)頂點(diǎn)為(h,k)的二次函數(shù)的關(guān)系式為y=a(x﹣h)2+k,

  當(dāng)a=2,h=3,k=4時(shí),

  二次函數(shù)的關(guān)系式為y=2(x﹣3)2+4.

  ∵2>0,

  ∴該二次函數(shù)圖象的開口向上.

  當(dāng)a=3,h=3,k=4時(shí),

  二次函數(shù)的關(guān)系式為y=3(x﹣3)2+4.

  ∵3>0,

  ∴該二次函數(shù)圖象的開口向上.

  ∵兩個(gè)函數(shù)y=2(x﹣3)2+4與y=3(x﹣3)2+4頂點(diǎn)相同,開口都向上,

  ∴兩個(gè)函數(shù)y=2(x﹣3)2+4與y=3(x﹣3)2+4是“同簇二次函數(shù)”.

  ∴符合要求的兩個(gè)“同簇二次函數(shù)”可以為:y=2(x﹣3)2+4與y=3(x﹣3)2+4.

  (2)∵y1的圖象經(jīng)過點(diǎn)A(1,1),

  ∴2×12﹣4×m×1+2m2+1=1.

  整理得:m2﹣2m+1=0.

  解得:m1=m2=1.

  ∴y1=2x2﹣4x+3

  =2(x﹣1)2+1.

  ∴y1+y2=2x2﹣4x+3+ax2+bx+5

  =(a+2)x2+(b﹣4)x+8

  ∵y1+y2與y1為“同簇二次函數(shù)”,

  ∴y1+y2=(a+2)(x﹣1)2+1

  =(a+2)x2﹣2(a+2)x+(a+2)+1.

  其中a+2>0,即a>﹣2.

  ∴ .

  解得: .

  ∴函數(shù)y2的表達(dá)式為:y2=5x2﹣10x+5.

  ∴y2=5x2﹣10x+5

  =5(x﹣1)2.

  ∴函數(shù)y2的圖象的對(duì)稱軸為x=1.

  ∵5>0,

  ∴函數(shù)y2的圖象開口向上.

 、佼(dāng)0≤x≤1時(shí),

  ∵函數(shù)y2的圖象開口向上,

  ∴y2隨x的增大而減小.

  ∴當(dāng)x=0時(shí),y2取最大值,

  最大值為5(0﹣1)2=5.

 、诋(dāng)1

  ∵函數(shù)y2的圖象開口向上,

  ∴y2隨x的增大而增大.

  ∴當(dāng)x=3時(shí),y2取最大值,

  最大值為5(3﹣1)2=20.

  綜上所述:當(dāng)0≤x≤3時(shí),y2的最大值為20.

  點(diǎn)評(píng): 本題考查了求二次函數(shù)表達(dá)式以及二次函數(shù)一般式與頂點(diǎn)式之間相互轉(zhuǎn)化,考查了二次函數(shù)的性質(zhì)(開口方向、增減性),考查了分類討論的思想,考查了閱讀理解能力.而對(duì)新定義的正確理解和分類討論是解決第二小題的關(guān)鍵.

我要提問】【本文糾錯(cuò)】【告訴好友】【打印此文】【返回頂部
將中華自考網(wǎng)添加到收藏夾 | 每次上網(wǎng)自動(dòng)訪問中華自考網(wǎng) | 復(fù)制本頁地址,傳給QQ/MSN上的好友 | 申請(qǐng)鏈接 TOP
關(guān)于本站  網(wǎng)站聲明  廣告服務(wù)  聯(lián)系方式  站內(nèi)導(dǎo)航
Copyright © 2006-2019 中華考試網(wǎng)(Examw.com) All Rights Reserved 營業(yè)執(zhí)照
博爱县| 安图县| 门头沟区| 松溪县| 仙桃市| 乌恰县| 泽州县| 西丰县| 菏泽市| 江源县| 喀喇沁旗| 阿克陶县| 耿马| 仲巴县| 温州市| 和硕县| 临海市| 中阳县| 徐闻县| 丁青县| 望江县| 邳州市| 定日县| 北票市| 法库县| 海晏县| 文昌市| 惠水县| 连南| 昌都县| 增城市| 黄山市| 光泽县| 来安县| 南投市| 遂昌县| 吴旗县| 浦城县| 鹰潭市| 宾阳县| 江津市|