7.(2014•四川宜賓,第21題,8分)在平面直角坐標(biāo)系中,若點(diǎn)P(x,y)的坐標(biāo)x、y均為整數(shù),則稱點(diǎn)P為格點(diǎn),若一個(gè)多邊形的面積記為S,其內(nèi)部的格點(diǎn)數(shù)記為N,邊界上的格點(diǎn)數(shù)記為L(zhǎng),例如圖中△ABC是格點(diǎn)三角形,對(duì)應(yīng)的S=1,N=0,L=4.
(1)求出圖中格點(diǎn)四邊形DEFG對(duì)應(yīng)的S,N,L.
(2)已知格點(diǎn)多邊形的面積可表示為S=N+aL+b,其中a,b為常數(shù),若某格點(diǎn)多邊形對(duì)應(yīng)的N=82,L=38,求S的值.
考點(diǎn): 規(guī)律型:圖形的變化類;三元一次方程組的應(yīng)用
分析: (1)理解題意,觀察圖形,即可求得結(jié)論;
(2)根據(jù)格點(diǎn)多邊形的面積S=N+aL+b,結(jié)合圖中的格點(diǎn)三角形ABC及格點(diǎn)四邊形DEFG,建立方程組,求出a,b即可求得S.
解答: 解:(1)觀察圖形,可得S=3,N=1,L=6;
(Ⅱ)根據(jù)格點(diǎn)三角形ABC及格點(diǎn)四邊形DEFG中的S、N、L的值可得,
,
解得a ,
∴S=N+L﹣1,
將N=82,L=38代入可得S=82+×38﹣1=100.
點(diǎn)評(píng): 此題考查格點(diǎn)圖形的面積變化與多邊形內(nèi)部格點(diǎn)數(shù)和邊界格點(diǎn)數(shù)的關(guān)系,從簡(jiǎn)單情況分析,找出規(guī)律解決問(wèn)題.
8.(2014•甘肅蘭州,第27題10分)給出定義,若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱該四邊形為勾股四邊形.
(1)在你學(xué)過(guò)的特殊四邊形中,寫(xiě)出兩種勾股四邊形的名稱;
(2)如圖,將△ABC繞頂點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)60°得到△DBE,連接AD,DC,CE,已知∠DCB=30°.
、偾笞C:△BCE是等邊三角形;
②求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.
考點(diǎn): 四邊形綜合題.
分析: (1)根據(jù)定義和特殊四邊形的性質(zhì),則有矩形或正方形或直角梯形;
(2)①首先證明△ABC≌△BDC,得出AC=DE,BC=BE,連接CE,進(jìn)一步得出△BCE為等邊三角形;
、诶玫冗吶切蔚男再|(zhì),進(jìn)一步得出△DCE是直角三角形,問(wèn)題得解.
解答: 解:(1)正方形、矩形、直角梯形均可;
證明:(2)①∵△ABC≌△DBE,
∴BC=BE,
∵∠CBE=60°,
∴△BCE是等邊三角形;
、凇摺鰽BC≌△DBE,
∴BE=BC,AC=ED;
∴△BCE為等邊三角形,
∴BC=CE,∠BCE=60°,
∵∠DCB=30°,
∴∠DCE=90°,
在Rt△DCE中,
DC2+CE2=DE2,
∴DC2+BC2=AC2.
點(diǎn)評(píng): 此題主要考查勾股定理,三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),是一道綜合性很強(qiáng)的題目.
9. (2014•揚(yáng)州,第26題,10分)對(duì)x,y定義一種新運(yùn)算T,規(guī)定:T(x,y)= (其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:T(0,1)= =B.
(1)已知T(1,﹣1)=﹣2,T(4,2)=1.
、偾骯,b的值;
②若關(guān)于m的不等式組 恰好有3個(gè)整數(shù)解,求實(shí)數(shù)p的取值范圍;
(2)若T(x,y)=T(y,x)對(duì)任意實(shí)數(shù)x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應(yīng)滿足怎樣的關(guān)系式?
考點(diǎn): 分式的混合運(yùn)算;解二元一次方程組;一元一次不等式組的整數(shù)解
分析: (1)①已知兩對(duì)值代入T中計(jì)算求出a與b的值;
②根據(jù)題中新定義化簡(jiǎn)已知不等式,根據(jù)不等式組恰好有3個(gè)整數(shù)解,求出p的范圍即可;
(2)由T(x,y)=T(y,x)列出關(guān)系式,整理后即可確定出a與b的關(guān)系式.
解答: 解:(1)①根據(jù)題意得:T(1,﹣1)= =﹣2,即a﹣b=﹣2;
T=(4,2)= =1,即2a+b=5,
解得:a=1,b=3;
、诟鶕(jù)題意得: ,
由①得:m≥﹣ ;
由②得:m< ,
∴不等式組的解集為﹣ ≤m< ,
∵不等式組恰好有3個(gè)整數(shù)解,即m=0,1,2,
∴2≤ <3,
解得:﹣2≤p<﹣ ;
(2)由T(x,y)=T(y,x),得到 = ,
整理得:(x2﹣y2)(2b﹣a)=0,
∵T(x,y)=T(y,x)對(duì)任意實(shí)數(shù)x,y都成立,
∴2b﹣a=0,即a=2B.
點(diǎn)評(píng): 此題考查了分式的混合運(yùn)算,解二元一次方程組,以及一元一次不等式組的整數(shù)解,弄清題中的新定義是解本題的關(guān)鍵.