一、選擇題
1. (2014•山東威海,第9題3分)如圖,在△ABC中,∠ABC=50°,∠ACB=60°,點(diǎn)E在BC的延長線上,∠ABC的平分線BD與∠ACE的平分線CD相交于點(diǎn)D,連接AD,下列結(jié)論中不正確的是( )
A. ∠BAC=70° B. ∠DOC=90° C. ∠BDC=35° D. ∠DAC=55°
考點(diǎn): 角平分線的性質(zhì);三角形內(nèi)角和定理
分析: 根據(jù)三角形的內(nèi)角和定理列式計算即可求出∠BAC=70°,再根據(jù)角平分線的定義求出∠ABO,然后利用三角形的內(nèi)角和定理求出∠AOB再根據(jù)對頂角相等可得∠DOC=∠AOB,根據(jù)鄰補(bǔ)角的定義和角平分線的定義求出∠DCO,再利用三角形的內(nèi)角和定理列式計算即可∠BDC,判斷出AD為三角形的外角平分線,然后列式計算即可求出∠DAC.
解答: 解:∵∠ABC=50°,∠ACB=60°,
∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A選項結(jié)論正確,
∵BD平分∠ABC,
∴∠ABO=∠ABC=×50°=25°,
在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,
∴∠DOC=∠AOB=85°,故B選項結(jié)論錯誤;
∵CD平分∠ACE,
∴∠ACD=(180°﹣60°)=60°,
∴∠BDC=180°﹣85°﹣60°=35°,故C選項結(jié)論正確;
∵BD、CD分別是∠ABC和∠ACE的平分線,
∴AD是△ABC的外角平分線,
∴∠DAC=(180°﹣70°)=55°,故D選項結(jié)論正確.
故選B.
點(diǎn)評: 本題考查了角平分線的性質(zhì),三角形的內(nèi)角和定理,角平分線的定義,熟記定理和概念是解題的關(guān)鍵.
2. (2014•山東臨沂,第3題3分)如圖,已知l1∥l2,∠A=40°,∠1=60°,則∠2的度數(shù)為( )
A. 40° B. 60° C. 80° D. 100°
考點(diǎn): 平行線的性質(zhì);三角形的外角性質(zhì).
分析: 根據(jù)兩直線平行,內(nèi)錯角相等可得∠3=∠1,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式計算即可得解.
解答: 解:∵l1∥l2,
∴∠3=∠1=60°,
∴∠2=∠A+∠3=40°+60°=100°.
故選D.
點(diǎn)評: 本題考查了平行線的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.
3. (2014•江蘇蘇州,第6題3分)如圖,在△ABC中,點(diǎn)D在BC上,AB=AD=DC,∠B=80°,則∠C的度數(shù)為( )
A. 30° B. 40° C. 45° D. 60°
考點(diǎn): 等腰三角形的性質(zhì)
分析: 先根據(jù)等腰三角形的性質(zhì)求出∠ADB的度數(shù),再由平角的定義得出∠ADC的度數(shù),根據(jù)等腰三角形的性質(zhì)即可得出結(jié)論.
解答: 解:∵△ABD中,AB=AD,∠B=80°,
∴∠B=∠ADB=80°,
∴∠ADC=180°﹣∠ADB=100°,
∵AD=CD,
∴∠C= = =40°.
故選B.
點(diǎn)評: 本題考查的是等腰三角形的性質(zhì),熟知等腰三角形的兩底角相等是解答此題的關(guān)鍵.
4.(2014•福建福州,第6題4分)下列命題中,假命題是【 】
A.對頂角相等 B.三角形兩邊和小于第三邊
C.菱形的四條邊都相等 D.多邊形的內(nèi)角和等于360°
5.(2014•臺灣,第20題3分)如圖,有一△ABC,今以B為圓心,AB長為半徑畫弧,交BC于D點(diǎn),以C為圓心,AC長為半徑畫弧,交BC于E點(diǎn).若∠B=40°,∠C=36°,則關(guān)于AD、AE、BE、CD的大小關(guān)系,下列何者正確?( )
A.AD=AE B.AE 分析:由∠C<∠B利用大角對大邊得到AB 解:∵∠C<∠B, ∴AB 即BE+ED ∴BE 故選D. 點(diǎn)評:考查了三角形的三邊關(guān)系,解題的關(guān)鍵是正確的理解題意,了解大邊對大角.