一、選擇題
1. (2014•山東煙臺(tái),第7題3分)如圖,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位線EF與對(duì)角線BD相交于點(diǎn)M,且BD⊥CD,則MF的長(zhǎng)為( )
A. 1.5 B. 3 C. 3.5 D. 4.5
考點(diǎn):等腰梯形的性質(zhì),直角三角形中30°銳角的性質(zhì),梯形及三角形的中位線.
分析: 根據(jù)等腰梯形的性質(zhì),可得∠ABC與∠C的關(guān)系,∠ABD與∠ADB的關(guān)系,根據(jù)等腰三角形的性質(zhì),可得∠ABD與∠ADB的關(guān)系,根據(jù)直角三角形的性質(zhì),可得BC的長(zhǎng),再根據(jù)三角形的中位線,可得答案.
解答:已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,
∴∠ABC=∠C,∠ABD=∠ADB,∠ADB=∠BDC.∴∠ABD=∠CBD,∠C=2∠DBC.
∵BD⊥CD,∴∠BDC=90°,∴∠DBC=∠C=30°,BC=2DC=2×3=6.
∵EF是梯形中位線,∴MF是三角形BCD的中位線,∴MF=BC= 6=3,
故選:B.
點(diǎn)評(píng):本題考查了等腰梯形的性質(zhì),利用了等腰梯形的性質(zhì),直角三角形的性質(zhì),三角形的中位線的性質(zhì).
2.(2014•湖南懷化,第5題,3分)如圖,已知等腰梯形ABCD中,AD∥BC,AB=DC,AC與BD相交于點(diǎn)O,則下列判斷不正確的是( )
A. △ABC≌△DCB B. △AOD≌△COB C. △ABO≌△DCO D. △ADB≌△DAC
考點(diǎn): 等腰梯形的性質(zhì);全等三角形的判定.
分析: 由等腰梯形ABCD中,AD∥BC,AB=DC,可得∠ABC=∠DCB,∠BAD=∠CDA,易證得△ABC≌△DCB,△ADB≌△DAC;繼而可證得∠ABO=∠DCO,則可證得△ABO≌△DCO.
解答: 解:A、∵等腰梯形ABCD中,AD∥BC,AB=DC,
∴∠ABC=∠DCB,
在△ABC和△DCB中,
,
∴△ABC≌△DCB(SAS);故正確;
B、∵AD∥BC,
∴△AOD∽△COB,
∵BC>AD,
∴△AOD不全等于△COB;故錯(cuò)誤;
C、∵△ABC≌△DCB,
∴∠ACB=∠DBC,
∵∠ABC=∠DCB,
∴∠ABO=∠DCO,
在△ABO和△DCO中,
,
∴△ABO≌△DCO(AAS);故正確;
D、∵等腰梯形ABCD中,AD∥BC,AB=DC,
∴∠BAD=∠CDA,
在△ADB和△DAC中,
,
∴△ADB≌△DAC(SAS),故正確.
故選B.
點(diǎn)評(píng): 此題考查了等腰三角形的性質(zhì)以及全等三角形的判定與性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
3. (2014•山東淄博,第7題4分)如圖,等腰梯形ABCD中,對(duì)角線AC、DB相交于點(diǎn)P,∠BAC=∠CDB=90°,AB=AD=DC.則cos∠DPC的值是( )
A. B. C. D.
考點(diǎn): 等腰梯形的性質(zhì).
分析: 先根據(jù)等腰三角形的性質(zhì)得出∠DAB+∠BAC=180°,AD∥BC,故可得出∠DAP=∠ACB,∠ADB=∠ABD,再由AB=AD=DC可知∠ABD=∠ADB,∠DAP=∠ACD,所以∠DAP=∠ABD=∠DBC,再根據(jù)∠BAC=∠CDB=90°可知,3∠ABD=90°,故∠ABD=30°,再由直角三角形的性質(zhì)求出∠DPC的度數(shù),進(jìn)而得出結(jié)論.
解答: 解:∵梯形ABCD是等腰梯形,
∴∠DAB+∠BAC=180°,AD∥BC,
∴∠DAP=∠ACB,∠ADB=∠ABD,
∵AB=AD=DC,
∴∠ABD=∠ADB,∠DAP=∠ACD,
∴∠DAP=∠ABD=∠DBC,
∵∠BAC=∠CDB=90°,
∴3∠ABD=90°,
∴∠ABD=30°,
在△ABP中,
∵∠ABD=30°,∠BAC=90°,
∴∠APB=60°,
∴∠DPC=60°,
∴cos∠DPC=cos60°=.
故選A.
點(diǎn)評(píng): 本題考查的是等腰梯形的性質(zhì),熟知等腰梯形同一底上的兩個(gè)角相等是解答此題的關(guān)鍵.
4.(2014•浙江寧波,第8題4分)如圖,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,則△ABC與△DCA的面積比為( )
A. 2:3 B. 2:5 C. 4:9 D. :
考點(diǎn): 相似三角形的判定與性質(zhì).
分析: 先求出△CBA∽△ACD,求出 = ,COS∠ACB•COS∠DAC= ,得出△ABC與△DCA的面積比= .
解答: 解:∵AD∥BC,
∴∠ACB=∠DAC
又∵∠B=∠ACD=90°,
∴△CBA∽△ACD
AB=2,DC=3,
∴COS∠ACB= = ,
COS∠DAC= =
∵△ABC與△DCA的面積比= ,
∴△ABC與△DCA的面積比= ,
故選:C.
點(diǎn)評(píng): 本題主要考查了三角形相似的判定及性質(zhì),解決本題的關(guān)鍵是明確△ABC與△DCA的面積比= .