11.(2014衡陽,第10題3分)如圖,一河壩的橫斷面為等腰梯形 ,壩頂寬 米,壩高 米,斜坡 的坡度 ,則壩底 的長度為【 】
A. 米 B. 米 C. 米 D. 米
二.填空題
1. ( 2014•廣西玉林市、防城港市,第17題3分)如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,則梯形ABCD的周長是 7+ .
考點: 直角梯形.
分析: 根據(jù)題意得出AB=AD,進而得出BD的長,再利用在直角三角形中30°所對的邊等于斜邊的一半,進而求出CD以及利用勾股定理求出BC的長,即可得出梯形ABCD的周長.
解答: 解:過點A作AE⊥BD于點E,
∵AD∥BC,∠A=120°,
∴∠ABC=60°,∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC=30°,
∴∠ABE=∠ADE=30°,
∴AB=AD,
∴AE= AD=1,
∴DE= ,則BD=2 ,
∵∠C=90°,∠DBC=30°,
∴DC= BD= ,
∴BC= = =3,
∴梯形ABCD的周長是:AB+AD+CD+BC=2+2+ +3=7+ .
故答案為:7+ .
點評: 此題主要考查了直角梯形的性質(zhì)以及勾股定理和直角三角形中30°所對的邊等于斜邊的一半等知識,得出∠DBC的度數(shù)是解題關(guān)鍵.
2. (2014•揚州,第13題,3分)如圖,若該圖案是由8個全等的等腰梯形拼成的,則圖中的∠1= 67.5° .
(第1題圖)
考點: 等腰梯形的性質(zhì);多邊形內(nèi)角與外角
分析: 首先求得正八邊形的內(nèi)角的度數(shù),則∠1的度數(shù)是正八邊形的度數(shù)的一半.
解答: 解:正八邊形的內(nèi)角和是:(8﹣2)×180°=1080°,
則正八邊形的內(nèi)角是:1080÷8=135°,
則∠1= ×135°=67.5°.
故答案是:67.5°.
點評: 本題考查了正多邊形的內(nèi)角和的計算,正確求得正八邊形的內(nèi)角的度數(shù)是關(guān)鍵.
3. (2014•揚州,第14題,3分)如圖,△ABC的中位線DE=5cm,把△ABC沿DE折疊,使點A落在邊BC上的點F處,若A、F兩點間的距離是8cm,則△ABC的面積為 40 cm3.
(第2題圖)
考點: 翻折變換(折疊問題);三角形中位線定理
分析: 根據(jù)對稱軸垂直平分對應(yīng)點連線,可得AF即是△ABC的高,再由中位線的性質(zhì)求出BC,繼而可得△ABC的面積.
解答: 解:∵DE是△ABC的中位線,
∴DE∥BC,BC=2DE=10cm;
由折疊的性質(zhì)可得:AF⊥DE,
∴AF⊥BC,
∴S△ABC= BC×AF= ×10×8=40cm2.
故答案為:40.
點評: 本題考查了翻折變換的性質(zhì)及三角形的中位線定理,解答本題的關(guān)鍵是得出AF是△ABC的高.
4. (2014•黑龍江龍東,第3題3分)如圖,梯形ABCD中,AD∥BC,點M是AD的中點,不添加輔助線,梯形滿足 AB=DC(或∠ABC=∠DCB、∠A=∠D)等 條件時,有MB=MC(只填一個即可).
考點: 梯形;全等三角形的判定..
專題: 開放型.
分析: 根據(jù)題意得出△ABM≌△△DCM,進而得出MB=MC.
解答: 解:當(dāng)AB=DC時,∵梯形ABCD中,AD∥BC,
則∠A=∠D,
∵點M是AD的中點,
∴AM=MD,
在△ABM和△△DCM中,
,
∴△ABM≌△△DCM(SAS),
∴MB=MC,
同理可得出:∠ABC=∠DCB、∠A=∠D時都可以得出MB=MC,
故答案為:AB=DC(或∠ABC=∠DCB、∠A=∠D)等.
點評: 此題主要考查了梯形的性質(zhì)以及全等三角形的判定與性質(zhì),得出△ABM≌△△DCM是解題關(guān)鍵.