故選A.
【點(diǎn)評(píng)】: 本題考查了二次函數(shù)與一元二次方程的關(guān)系,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.解題時(shí),畫出函數(shù)草圖,由函數(shù)圖象直觀形象地得出結(jié)論,避免了繁瑣復(fù)雜的計(jì)算.
2、(2014年山東泰安第20題)二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如下表:
X ﹣1 0 1 3
y ﹣1 3 5 3
下列結(jié)論:
(1)ac<0;
(2)當(dāng)x>1時(shí),y的值隨x值的增大而減小.
(3)3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
(4)當(dāng)﹣10.
其中正確的個(gè)數(shù)為( )
A.4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
【分析】:根據(jù)表格數(shù)據(jù)求出二次函數(shù)的對(duì)稱軸為直線x=1.5,然后根據(jù)二次函數(shù)的性質(zhì)對(duì)各小題分析判斷即可得解.
【解答】:由圖表中數(shù)據(jù)可得出:x=1時(shí),y=5值最大,所以二次函數(shù)y=ax2+bx+c開口向下,a<0;又x=0時(shí),y=3,所以c=3>0,所以ac<0,故(1)正確;
∵二次函數(shù)y=ax2+bx+c開口向下,且對(duì)稱軸為x= =1.5,∴當(dāng)x>1.5時(shí),y的值隨x值的增大而減小,故(2)錯(cuò)誤;
∵x=3時(shí),y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一個(gè)根,故(3)正確;
∵x=﹣1時(shí),ax2+bx+c=﹣1,∴x=﹣1時(shí),ax2+(b﹣1)x+c=0,∵x=3時(shí),ax2+(b﹣1)x+c=0,且函數(shù)有最大值,∴當(dāng)﹣10,故(4)正確.
故選B.
【點(diǎn)評(píng)】:本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象與系數(shù)的關(guān)系,拋物線與x軸的交點(diǎn),二次函數(shù)與不等式,有一定難度.熟練掌握二次函數(shù)圖象的性質(zhì)是解題的關(guān)鍵.
3、(2014年山東煙臺(tái)第11題)二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:
、4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時(shí),y的值隨x值的增大而增大.
其中正確的結(jié)論有( )
A.1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【分析】:根據(jù)拋物線的對(duì)稱軸為直線x=﹣ =2,則有4a+b=0;觀察函數(shù)圖象得到當(dāng)x=﹣3時(shí),函數(shù)值小于0,則9a﹣3b+c<0,即9a+c<3b;由于x=﹣1時(shí),y=0,則a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根據(jù)拋物線開口向下得a<0,于是有8a+7b+2c>0;由于對(duì)稱軸為直線x=2,根據(jù)二次函數(shù)的性質(zhì)得到當(dāng)x>2時(shí),y隨x的增大而減小.
【解答】:∵拋物線的對(duì)稱軸為直線x=﹣ =2,∴b=﹣4a,即4a+b=0,所以①正確;
∵當(dāng)x=﹣3時(shí),y<0,∴9a﹣3b+c<0,即9a+c<3b,所以②錯(cuò)誤;
∵拋物線與x軸的一個(gè)交點(diǎn)為(﹣1,0),∴a﹣b+c=0,
而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,
∵拋物線開口向下,∴a<0,∴8a+7b+2c>0,所以③正確;
∵對(duì)稱軸為直線x=2,
∴當(dāng)﹣12時(shí),y隨x的增大而減小,所以④錯(cuò)誤.故選B.
【點(diǎn)評(píng)】:本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0),二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小,當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口;一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置,當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左; 當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右;常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn). 拋物線與y軸交于(0,c);拋物線與x軸交點(diǎn)個(gè)數(shù)由△決定,△=b2﹣4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);△=b2﹣4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2﹣4ac<0時(shí),拋物線與x軸沒有交點(diǎn).
4、(2014•威海第11題)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列說法:
、賑=0;②該拋物線的對(duì)稱軸是直線x=﹣1;③當(dāng)x=1時(shí),y=2a;④am2+bm+a>0(m≠﹣1).
其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
【考點(diǎn)】: 二次函數(shù)圖象與系數(shù)的關(guān)系.
【分析】: 由拋物線與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
【解答】: 解:拋物線與y軸交于原點(diǎn),c=0,故①正確;
該拋物線的對(duì)稱軸是: ,直線x=﹣1,故②正確;
當(dāng)x=1時(shí),y=2a+b+c,
∵對(duì)稱軸是直線x=﹣1,
∴ ,b=2a,
又∵c=0,
∴y=4a,故③錯(cuò)誤;
x=m對(duì)應(yīng)的函數(shù)值為y=am2+bm+c,
x=﹣1對(duì)應(yīng)的函數(shù)值為y=a﹣b+c,又x=﹣1時(shí)函數(shù)取得最小值,
∴a﹣b+c
∵b=2a,
∴am2+bm+a>0(m≠﹣1).故④正確.
故選:C.
【點(diǎn)評(píng)】: 本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系.二次函數(shù)y=ax2+bx+c(a≠0)系數(shù)符號(hào)由拋物線開口方向、對(duì)稱軸、拋物線與y軸的交點(diǎn)拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.