5、(2014•寧波第12題)已知點A(a﹣2b,2﹣4ab)在拋物線y=x2+4x+10上,則點A關(guān)于拋物線對稱軸的對稱點坐標為( )
A. (﹣3,7) B. (﹣1,7) C. (﹣4,10) D. (0,10)
【考點】: 二次函數(shù)圖象上點的坐標特征;坐標與圖形變化-對稱.
【分析】: 把點A坐標代入二次函數(shù)解析式并利用完全平方公式整理,然后根據(jù)非負數(shù)的性質(zhì)列式求出a、b,再求出點A的坐標,然后求出拋物線的對稱軸,再根據(jù)對稱性求解即可.
【解答】: 解:∵點A(a﹣2b,2﹣4ab)在拋物線y=x2+4x+10上,
∴(a﹣2b)2+4×(a﹣2b)+10=2﹣4ab,
a2﹣4ab+4b2+4a﹣8ab+10=2﹣4ab,
(a+2)2+4(b﹣1)2=0,
∴a+2=0,b﹣1=0,
解得a=﹣2,b=1,
∴a﹣2b=﹣2﹣2×1=﹣4,
2﹣4ab=2﹣4×(﹣2)×1=10,
∴點A的坐標為(﹣4,10),
∵對稱軸為直線x=﹣ =﹣2,
∴點A關(guān)于對稱軸的對稱點的坐標為(0,10).
故選D.
【點評】: 本題考查了二次函數(shù)圖象上點的坐標特征,二次函數(shù)的對稱性,坐標與圖形的變化﹣對稱,把點的坐標代入拋物線解析式并整理成非負數(shù)的形式是解題的關(guān)鍵.
6、(2014•溫州第10題)如圖,矩形ABCD的頂點A在第一象限,AB∥x軸,AD∥y軸,且對角線的交點與原點O重合.在邊AB從小于AD到大于AD的變化過程中,若矩形ABCD的周長始終保持不變,則經(jīng)過動點A的反比例函數(shù)y= (k≠0)中k的值的變化情況是( )
A. 一直增大 B. 一直減小 C. 先增大后減小 D. 先減小后增大
【考點】: 反比例函數(shù)圖象上點的坐標特征;矩形的性質(zhì).
【分析】: 設(shè)矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周長始終保持不變,則a+b為定值.根據(jù)矩形對角線的交點與原點O重合及反比例函數(shù)比例系數(shù)k的幾何意義可知k= AB• AD=ab,再根據(jù)a+b一定時,當a=b時,ab最大可知在邊AB從小于AD到大于AD的變化過程中,k的值先增大后減小.
【解答】: 解:設(shè)矩形ABCD中,AB=2a,AD=2B.
∵矩形ABCD的周長始終保持不變,
∴2(2a+2b)=4(a+b)為定值,
∴a+b為定值.
∵矩形對角線的交點與原點O重合
∴k= AB• AD=ab,
又∵a+b為定值時,當a=b時,ab最大,
∴在邊AB從小于AD到大于AD的變化過程中,k的值先增大后減小.
故選C.
【點評】: 本題考查了矩形的性質(zhì),反比例函數(shù)比例系數(shù)k的幾何意義及不等式的性質(zhì),有一定難度.根據(jù)題意得出k= AB• AD=ab是解題的關(guān)鍵.
7、(2014年山東泰安第17題)已知函數(shù)y=(x﹣m)(x﹣n)(其中m A.m+n<0 B m+n>0 C.m-n<0 D.m-n>0 【分析】: 根據(jù)二次函數(shù)圖象判斷出m<﹣1,n=1,然后求出m+n<0,再根據(jù)一次函數(shù)與反比例函數(shù)圖象的性質(zhì)判斷即可. 【解答】:由圖可知,m<﹣1,n=1,所以,m+n<0, 所以,一次函數(shù)y=mx+n經(jīng)過第二四象限,且與y軸相交于點(0,1), 反比例函數(shù)y= 的圖象位于第二四象限, 縱觀各選項,只有C選項圖形符合.故選C. 【點評】:本題考查了二次函數(shù)圖象,一次函數(shù)圖象,反比例函數(shù)圖象,觀察二次函數(shù)圖象判斷出m、n的取值是解題的關(guān)鍵.