一、選擇題
1. (2014•山東棗莊,第3題3分)如圖,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,則∠D的度數(shù)為( )
A. 17° B. 34° C. 56° D. 124°
考點(diǎn): 平行線的性質(zhì);直角三角形的性質(zhì)
分析: 根據(jù)兩直線平行,同位角相等可得∠DCE=∠A,再根據(jù)直角三角形兩銳角互余列式計(jì)算即可得解.
解答: 解:∵AB∥CD,
∴∠DCE=∠A=34°,
∵∠DEC=90°,
∴∠D=90°﹣∠DCE=90°﹣34°=56°.
故選C.
點(diǎn)評(píng): 本題考查了平行線的性質(zhì),直角三角形兩銳角互余的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.
2. 1.(2014•湖南張家界,第7題,3分)如圖,在Rt△ABC中,∠ACB=60°,DE是斜邊AC的中垂線,分別交AB、AC于D、E兩點(diǎn).若BD=2,則AC的長(zhǎng)是( )
A. 4 B. 4 C. 8 D. 8
考點(diǎn): 線段垂直平分線的性質(zhì);含30度角的直角三角形;勾股定理.
分析: 求出∠ACB,根據(jù)線段垂直平分線求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.
解答: 解:如圖,∵在Rt△ABC中,∠ACB=60°,
∴∠A=30°.
∵DE垂直平分斜邊AC,
∴AD=CD,
∴∠A=∠ACD=30°,
∴∠DCB=60°﹣30°=30°,
∵BD=2,
∴CD=AD=4,
∴AB=2+4+2=6,
在△BCD中,由勾股定理得:CB=2 ,
在△ABC中,由勾股定理得:AC= =4 ,
故選:B.
點(diǎn)評(píng): 本題考查了線段垂直平分線,含30度角的直角三角形,等腰三角形的性質(zhì),三角形的內(nèi)角和定理等知識(shí)點(diǎn)的應(yīng)用,主要考查學(xué)生運(yùn)用這些定理進(jìn)行推理的能力,題目綜合性比較強(qiáng),難度適中.
3. (2014•十堰9.(3分))如圖,在四邊形ABCD中,AD∥BC,DE⊥BC,垂足為點(diǎn)E,連接AC交DE于點(diǎn)F,點(diǎn)G為AF的中點(diǎn),∠ACD=2∠ACB.若DG=3,EC=1,則DE的長(zhǎng)為( )
A. 2 B. C. 2 D.
考點(diǎn): 勾股定理;等腰三角形的判定與性質(zhì);直角三角形斜邊上的中線.
分析: 根據(jù)直角三角形斜邊上的中線的性質(zhì)可得DG=AG,根據(jù)等腰三角形的性質(zhì)可得∠GAD=∠GDA,根據(jù)三角形外角的性質(zhì)可得∠CGD=2∠GAD,再根據(jù)平行線的性質(zhì)和等量關(guān)系可得∠ACD=∠CGD,根據(jù)等腰三角形的性質(zhì)可得CD=DG,再根據(jù)勾股定理即可求解.
解答: 解:∵AD∥BC,DE⊥BC,
∴DE⊥AD,∠CAD=∠ACB
∵點(diǎn)G為AF的中點(diǎn),
∴DG=AG,
∴∠GAD=∠GDA,
∴∠CGD=2∠CAD,
∵∠ACD=2∠ACB,
∴∠ACD=∠CGD,
∴CD=DG=3,
在Rt△CED中,DE= =2 .
故選:C.
點(diǎn)評(píng): 綜合考查了勾股定理,等腰三角形的判定與性質(zhì)和直角三角形斜邊上的中線,解題的關(guān)鍵是證明CD=DG=3.
4. (2014•婁底8.(3分))下列命題中,錯(cuò)誤的是( )
A. 平行四邊形的對(duì)角線互相平分
B. 菱形的對(duì)角線互相垂直平分
C. 矩形的對(duì)角線相等且互相垂直平分
D. 角平分線上的點(diǎn)到角兩邊的距離相等
考點(diǎn): 命題與定理.
分析: 根據(jù)平行四邊形的性質(zhì)對(duì)A進(jìn)行判斷;根據(jù)菱形的性質(zhì)對(duì)B進(jìn)行判斷;根據(jù)矩形的性質(zhì)對(duì)C進(jìn)行判斷;根據(jù)角平分線的性質(zhì)對(duì)D進(jìn)行判斷.
解答: 解:A、平行四邊形的對(duì)角線互相平分,所以A選項(xiàng)的說(shuō)法正確;
B、菱形的對(duì)角線互相垂直平分,所以B選項(xiàng)的說(shuō)法正確;
C、矩形的對(duì)角線相等且互相平分,所以C選項(xiàng)的說(shuō)法錯(cuò)誤;
D、角平分線上的點(diǎn)到角兩邊的距離相等,所以D選項(xiàng)的說(shuō)法正確.
故選C.
點(diǎn)評(píng): 本題考查了命題與定理:判斷事物的語(yǔ)句叫命題;正確的命題稱為真命題,錯(cuò)誤的命題稱為假命題;經(jīng)過(guò)推理論證的真命題稱為定理.