-奇數(shù)和偶數(shù)
整數(shù)中,能被2整除的數(shù)是偶數(shù),反之是奇數(shù),偶數(shù)可用2k表示 ,奇數(shù)可用2k+1表示,這里k是整數(shù).
關(guān)于奇數(shù)和偶數(shù),有下面的性質(zhì):
(1)奇數(shù)不會同時是偶數(shù);兩個連續(xù)整數(shù)中必是一個奇數(shù)一個偶數(shù);
(2)奇數(shù)個奇數(shù)和是奇數(shù);偶數(shù)個奇數(shù)的和是偶數(shù);任意多個偶數(shù)的和是偶數(shù);
(3)兩個奇(偶)數(shù)的差是偶數(shù);一個偶數(shù)與一個奇數(shù)的差是奇數(shù);
(4)若a、b為整數(shù),則a+b與a-b有相同的奇數(shù)偶;
(5)n個奇數(shù)的乘積是奇數(shù),n個偶數(shù)的乘積是2n的倍數(shù);順式中有一個是偶數(shù),則乘積是偶數(shù).
以上性質(zhì)簡單明了,解題時如果能巧妙應(yīng)用,常?梢猿銎嬷苿.
1.代數(shù)式中的奇偶問題
例1(第2屆“華羅庚金杯”決賽題)下列每個算式中,最少有一個奇數(shù),一個偶數(shù),那么這12個整數(shù)中,至少有幾個偶數(shù)?
□+□=□, □-□=□,
□×□=□ □÷□=□.
解 因為加法和減法算式中至少各有一個偶數(shù),乘法和除法算式中至少各有二個偶數(shù),故這12個整數(shù)中至少有六個偶數(shù).
例2 (第1屆“祖沖之杯”數(shù)學邀請賽)已知n是偶數(shù),m是奇數(shù),方程組
是整數(shù),那么
(A)p、q都是偶數(shù). (B)p、q都是奇數(shù).
(C)p是偶數(shù),q是奇數(shù) (D)p是奇數(shù),q是偶數(shù)
分析 由于1988y是偶數(shù),由第一方程知p=x=n+1988y,所以p是偶數(shù),將其代入第二方程中,于是11x也為偶數(shù),從而27y=m-11x為奇數(shù),所以是y=q奇數(shù),應(yīng)選(C)
例3 在1,2,3…,1992前面任意添上一個正號和負號,它們的代數(shù)和是奇數(shù)還是偶數(shù).
分析 因為兩個整數(shù)之和與這兩個整數(shù)之差的奇偶性相同,所以在題設(shè)數(shù)字前面都添上正號和負號不改變其奇偶性,而1+2+3+…+1992= =996×1993為偶數(shù) 于是題設(shè)的代數(shù)和應(yīng)為偶數(shù).
2.與整除有關(guān)的問題
例4(首屆“華羅庚金杯”決賽題)70個數(shù)排成一行,除了兩頭的兩個數(shù)以外,每個數(shù)的3倍都恰好等于它兩邊兩個數(shù)的和,這一行最左邊的幾個數(shù)是這樣的:0,1,3,8,21,….問最右邊的一個數(shù)被6除余幾?
解 設(shè)70個數(shù)依次為a1,a2,a3據(jù)題意有
a1=0, 偶
a2=1 奇
a3=3a2-a1, 奇
a4=3a3-a2, 偶
a5=3a4-a3, 奇
a6=3a5-a4, 奇
………………
由此可知:
當n被3除余1時,an是偶數(shù);
當n被3除余0時,或余2時,an是奇數(shù),顯然a70是3k+1型偶數(shù),所以k必須是奇數(shù),令k=2n+1,則
a70=3k+1=3(2n+1)+1=6n+4.
解 設(shè)十位數(shù),五個奇數(shù)位數(shù)字之和為a,五個偶數(shù)位之和為b(10≤a≤35,10≤b≤35),則a+b=45,又十位數(shù)能被11整除,則a-b應(yīng)為0,11,22(為什么?).由于a+b與a-b有相同的奇偶性,因此a-b=11即a=28,b=17.
要排最大的十位數(shù),妨先排出前四位數(shù)9876,由于偶數(shù)位五個數(shù)字之和是17,現(xiàn)在8+6=14,偶數(shù)位其它三個數(shù)字之和只能是17-14=3,這三個數(shù)字只能是2,1,0.
故所求的十位數(shù)是9876524130.
例6(1990年日本高考數(shù)學試題)設(shè)a、b是自然數(shù),且有關(guān)系式
123456789=(11111+a)(11111-b), ①
證明a-b是4的倍數(shù).
證明 由①式可知
11111(a-b)=ab+4×617 ②
∵a>0,b>0,∴a-b>0
首先,易知a-b是偶數(shù),否則11111(a-b)是奇數(shù),從而知ab是奇數(shù),進而知a、b都是奇數(shù),可知(11111+a)及(11111-b)都為偶數(shù),這與式①矛盾
其次,從a-b是偶數(shù),根據(jù)②可知ab是偶數(shù),進而易知a、b皆為偶數(shù),從而ab+4×617是4的倍數(shù),由②知a-b是4的倍數(shù).