华南俳烁实业有限公司

單獨(dú)報(bào)考
當(dāng)前位置:中華考試網(wǎng) >> 高考 >> 山東高考 >> 山東高考數(shù)學(xué)模擬題 >> 2017年山東專項(xiàng)提分練習(xí)試題(四)

2017年山東專項(xiàng)提分練習(xí)試題(四)_第3頁

中華考試網(wǎng)  2017-03-01  【

12.

如圖,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,ADDC,ABDC.

(1)求證:D1CAC1;

(2)設(shè)E是DC上一點(diǎn),試確定E的位置,使D1E平面A1BD,并說明理由.

命題立意:本題主要考查空間幾何體中的平行與垂直的判定,考查考生的空間想象能力和推理論證能力.通過已知條件中的線線垂直關(guān)系和線面垂直的判定證明線面垂直,從而證明線線的垂直關(guān)系.并通過線段的長度關(guān)系,借助題目中線段的中點(diǎn)和三角形的中位線尋找出線線平行,證明出線面的平行關(guān)系.解決本題的關(guān)鍵是學(xué)會(huì)作圖、轉(zhuǎn)化、構(gòu)造.

解析:(1)在直四棱柱ABCD-A1B1C1D1中,連接C1D, DC=DD1,

四邊形DCC1D1是正方形,

DC1⊥D1C.

又ADDC,ADDD1,DC∩DD1=D,

AD⊥平面DCC1D1,

又D1C平面DCC1D1,

AD⊥D1C.

∵ AD⊂平面ADC1,DC1平面ADC1,

且AD∩DC1=D,

D1C⊥平面ADC1,

又AC1平面ADC1,

D1C⊥AC1.

(1)題圖

(2)題圖

(2)連接AD1,AE,D1E,設(shè)AD1∩A1D=M,BD∩AE=N,連接MN.

平面AD1E∩平面A1BD=MN,

要使D1E平面A1BD,

可使MND1E,又M是AD1的中點(diǎn),

則N是AE的中點(diǎn).

又易知ABN≌△EDN,

AB=DE.

即E是DC的中點(diǎn).

綜上所述,當(dāng)E是DC的中點(diǎn)時(shí),可使D1E平面A1BD.

13.

已知直三棱柱ABC-A′B′C′滿足BAC=90°,AB=AC=AA′=2,點(diǎn)M,N分別為A′B和B′C′的中點(diǎn).

(1)證明:MN平面A′ACC′;

(2)求三棱錐C-MNB的體積.

命題立意:本題主要考查空間線面位置關(guān)系、三棱錐的體積等基礎(chǔ)知識(shí).意在考查考生的空間想象能力、推理論證能力和運(yùn)算求解能力.

解析:(1)證明:如圖,連接AB′,AC′,

四邊形ABB′A′為矩形,M為A′B的中點(diǎn),

AB′與A′B交于點(diǎn)M,且M為AB′的中點(diǎn),又點(diǎn)N為B′C′的中點(diǎn).

MN∥AC′.

又MN平面A′ACC′且AC′平面A′ACC′,

MN∥平面A′ACC′.

(2)由圖可知VC-MNB=VM-BCN,

BAC=90°, BC==2,

又三棱柱ABC-A′B′C′為直三棱柱,且AA′=4,

S△BCN=×2×4=4.

A′B′=A′C′=2,BAC=90°,點(diǎn)N為B′C′的中點(diǎn),

A′N⊥B′C′,A′N=.

又BB′⊥平面A′B′C′,

A′N⊥BB′,

A′N⊥平面BCN.

又M為A′B的中點(diǎn),

M到平面BCN的距離為,

VC-MNB=VM-BCN=×4×=.

14.

如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,ABDC,PAD是等邊三角形,BD=2AD=8,AB=2DC=4.

(1)設(shè)M是PC上的一點(diǎn),證明:平面MBD平面PAD;

(2)求四棱錐P-ABCD的體積.

命題立意:本題主要考查線面垂直的判定定理、面面垂直的判定定理與性質(zhì)定理以及棱錐的體積的計(jì)算等,意在考查考生的邏輯推理能力與計(jì)算能力,考查化歸與轉(zhuǎn)化思想.

解析:(1)證明:在ABD中,因?yàn)锳D=4,BD=8,AB=4,所以AD2+BD2=AB2.

故ADBD.

又平面PAD平面ABCD,平面PAD∩平面ABCD=AD,BD平面ABCD,

所以BD平面PAD,

又BD平面MBD,

所以平面MBD平面PAD.

(2)過點(diǎn)P作OPAD交AD于點(diǎn)O,

因?yàn)槠矫鍼AD平面ABCD,

所以PO平面ABCD.

因此PO為四棱錐P-ABCD的高.

又PAD是邊長為4的等邊三角形,

所以PO=×4=2.

在四邊形ABCD中,ABDC,AB=2DC,

所以四邊形ABCD是梯形.

在Rt△ADB中,斜邊AB上的高為=,此即為梯形ABCD的高.

所以四邊形ABCD的面積S=×=24.

故四棱錐P-ABCD的體積VP-ABCD=×24×2=16.

123
糾錯(cuò)評(píng)論責(zé)編:jiaojiao95
相關(guān)推薦
熱點(diǎn)推薦»
那曲县| 奉新县| 固阳县| 滨海县| 绥中县| 开平市| 嵊泗县| 调兵山市| 融水| 宕昌县| 仪陇县| 繁峙县| 江孜县| 通化县| 自治县| 黎城县| 邵阳县| 离岛区| 遂川县| 沈丘县| 剑阁县| 禄劝| 额济纳旗| 德化县| 盐城市| 孝昌县| 静安区| 固镇县| 吉水县| 肥城市| 新乐市| 广东省| 莆田市| 梨树县| 类乌齐县| 武安市| 安岳县| 富蕴县| 日照市| 衡山县| 海南省|