华南俳烁实业有限公司

單獨報考
當(dāng)前位置:中華考試網(wǎng) >> 高考 >> 山東高考 >> 山東高考數(shù)學(xué)模擬題 >> 2017年山東專項提分練習(xí)試題(四)

2017年山東專項提分練習(xí)試題(四)_第2頁

中華考試網(wǎng)  2017-03-01  【

二、填空題

7.如圖,四邊形ABCD為菱形,四邊形CEFB為正方形,平面ABCD平面CEFB,CE=1,AED=30°,則異面直線BC與AE所成角的大小為________.

答案:45° 解題思路:因為BCAD,所以EAD就是異面直線BC與AE所成的角.

因為平面ABCD平面CEFB,且ECCB,

所以EC平面ABCD.

在RtECD中,EC=1,CD=1,故ED==.

在AED中,AED=30°,AD=1,由正弦定理可得=,即sin EAD===.

又因為EAD∈(0°,90°),所以EAD=45°.

故異面直線BC與AE所成的角為45°.

8.給出命題:

異面直線是指空間中既不平行又不相交的直線;

兩異面直線a,b,如果a平行于平面α,那么b不平行于平面α;

兩異面直線a,b,如果a平面α,那么b不垂直于平面α;

兩異面直線在同一平面內(nèi)的射影不可能是兩條平行直線.

上述命題中,真命題的序號是________.

答案: 解題思路:本題考查了空間幾何體中的點、線、面之間的關(guān)系.根據(jù)異面直線的定義知:異面直線是指空間中既不平行又不相交的直線,故命題為真命題;兩條異面直線可以平行于同一個平面,故命題為假命題;若bα,則ab,即a,b共面,這與a,b為異面直線矛盾,故命題為真命題;兩條異面直線在同一個平面內(nèi)的射影可以是:兩條平行直線、兩條相交直線、一點一直線,故命題為假命題.

9.如果一個棱錐的底面是正多邊形,并且頂點在底面的射影是底面的中心,這樣的棱錐叫做正棱錐.已知一個正六棱錐的各個頂點都在半徑為3的球面上,則該正六棱錐的體積的最大值為________.

答案:16 命題立意:本題以球的內(nèi)接組合體問題引出,綜合考查了棱錐體積公式、利用導(dǎo)數(shù)工具處理函數(shù)最值的方法,同時也有效地考查了考生的運算求解能力和數(shù)學(xué)建模能力.

解題思路:設(shè)球心到底面的距離為x,則底面邊長為,高為x+3,正六棱錐的體積V=×(9-x2)×6(x+3)=(-x3-3x2+9x+27),其中0≤x<3,則V′=(-3x2-6x+9)=0,令x2+2x-3=0,解得x=1或x=-3(舍),故Vmax=V(1)=(-1-3+9+27)=16.

10.已知三棱錐P-ABC的各頂點均在一個半徑為R的球面上,球心O在AB上,PO平面ABC,=,則三棱錐與球的體積之比為________.

答案: 命題立意:本題主要考查線面垂直、三棱錐與球的體積計算方法,意在考查考生的空間想象能力與基本運算能力.

解題思路:依題意,AB=2R,又=,ACB=90°,因此AC=R,BC=R,三棱錐P-ABC的體積VP-ABC=PO·SABC=×R××R×R=R3.而球的體積V球=R3,因此VP-ABCV球=R3R3=.

三、解答題

11.

如圖,四邊形ABCD與A′ABB′都是正方形,點E是A′A的中點,A′A平面ABCD.

(1)求證:A′C平面BDE;

(2)求證:平面A′AC平面BDE.

解題探究:第一問通過三角形的中位線證明出線線平行,從而證明出線面平行;第二問由A′A與平面ABCD垂直得到線線垂直,再由線線垂直證明出BD與平面A′AC垂直,從而得到平面與平面垂直.

解析:(1)設(shè)AC交BD于M,連接ME.

四邊形ABCD是正方形,

M為AC的中點.

又 E為A′A的中點,

ME為A′AC的中位線,

ME∥A′C.

又 ME⊂平面BDE,

A′C⊄平面BDE,

A′C∥平面BDE.

(2)∵ 四邊形ABCD為正方形, BD⊥AC.

∵ A′A⊥平面ABCD,BD平面ABCD,

A′A⊥BD.

又AC∩A′A=A, BD⊥平面A′AC.

BD⊂平面BDE,

平面A′AC平面BDE.

123
糾錯評論責(zé)編:jiaojiao95
相關(guān)推薦
熱點推薦»
佛冈县| 乌鲁木齐市| 云和县| 遂溪县| 清丰县| 崇文区| 高台县| 西吉县| 遵义市| 哈尔滨市| 汉阴县| 合肥市| 南开区| 喜德县| 马边| 阜新市| 蕉岭县| 西城区| 金山区| 高州市| 天津市| 虎林市| 遂平县| 偃师市| 台江县| 迁安市| 邢台市| 顺平县| 彩票| 北宁市| 贡嘎县| 青海省| 宁南县| 临沂市| 龙井市| 清水县| 监利县| 敦煌市| 哈巴河县| 河间市| 福安市|