华南俳烁实业有限公司

單獨(dú)報(bào)考
當(dāng)前位置:中華考試網(wǎng) >> 高考 >> 全國(guó)高考 >> 全國(guó)高考數(shù)學(xué)模擬題 >> 2017年高考數(shù)學(xué)提分專項(xiàng)練習(xí)(四)

2017年高考數(shù)學(xué)提分專項(xiàng)練習(xí)(四)_第3頁(yè)

中華考試網(wǎng)  2016-12-27  【

13.

已知直三棱柱ABC-A′B′C′滿足BAC=90°,AB=AC=AA′=2,點(diǎn)M,N分別為A′B和B′C′的中點(diǎn).

(1)證明:MN平面A′ACC′;

(2)求三棱錐C-MNB的體積.

命題立意:本題主要考查空間線面位置關(guān)系、三棱錐的體積等基礎(chǔ)知識(shí).意在考查考生的空間想象能力、推理論證能力和運(yùn)算求解能力.

解析:(1)證明:如圖,連接AB′,AC′,

四邊形ABB′A′為矩形,M為A′B的中點(diǎn),

AB′與A′B交于點(diǎn)M,且M為AB′的中點(diǎn),又點(diǎn)N為B′C′的中點(diǎn).

MN∥AC′.

又MN平面A′ACC′且AC′平面A′ACC′,

MN∥平面A′ACC′.

(2)由圖可知VC-MNB=VM-BCN,

BAC=90°, BC==2,

又三棱柱ABC-A′B′C′為直三棱柱,且AA′=4,

S△BCN=×2×4=4.

A′B′=A′C′=2,BAC=90°,點(diǎn)N為B′C′的中點(diǎn),

A′N⊥B′C′,A′N=.

又BB′⊥平面A′B′C′,

A′N⊥BB′,

A′N⊥平面BCN.

又M為A′B的中點(diǎn),

M到平面BCN的距離為,

VC-MNB=VM-BCN=×4×=.

14.

如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,ABDC,PAD是等邊三角形,BD=2AD=8,AB=2DC=4.

(1)設(shè)M是PC上的一點(diǎn),證明:平面MBD平面PAD;

(2)求四棱錐P-ABCD的體積.

命題立意:本題主要考查線面垂直的判定定理、面面垂直的判定定理與性質(zhì)定理以及棱錐的體積的計(jì)算等,意在考查考生的邏輯推理能力與計(jì)算能力,考查化歸與轉(zhuǎn)化思想.

解析:(1)證明:在ABD中,因?yàn)锳D=4,BD=8,AB=4,所以AD2+BD2=AB2.

故ADBD.

又平面PAD平面ABCD,平面PAD∩平面ABCD=AD,BD平面ABCD,

所以BD平面PAD,

又BD平面MBD,

所以平面MBD平面PAD.

(2)過(guò)點(diǎn)P作OPAD交AD于點(diǎn)O,

因?yàn)槠矫鍼AD平面ABCD,

所以PO平面ABCD.

因此PO為四棱錐P-ABCD的高.

又PAD是邊長(zhǎng)為4的等邊三角形,

所以PO=×4=2.

在四邊形ABCD中,ABDC,AB=2DC,

所以四邊形ABCD是梯形.

在Rt△ADB中,斜邊AB上的高為=,此即為梯形ABCD的高.

所以四邊形ABCD的面積S=×=24.

故四棱錐P-ABCD的體積VP-ABCD=×24×2=16.

123
糾錯(cuò)評(píng)論責(zé)編:jiaojiao95
相關(guān)推薦
熱點(diǎn)推薦»
长垣县| 个旧市| 佛山市| 新营市| 台中市| 甘谷县| 获嘉县| 鄂伦春自治旗| 增城市| 靖安县| 东丰县| 甘谷县| 奉化市| 辽阳县| 安义县| 云安县| 大姚县| 榆树市| 游戏| 宁陵县| 铜陵市| 荆门市| 湖南省| 曲松县| 醴陵市| 镇雄县| 乐至县| 汤阴县| 三河市| 永宁县| 衡东县| 永年县| 赤水市| 枣庄市| 竹山县| 基隆市| 韶关市| 迁西县| 崇仁县| 东阿县| 扶沟县|