一、選擇題
1.現(xiàn)采用隨機(jī)模擬的方法估計(jì)某運(yùn)動(dòng)員射擊4次,至少擊中3次的概率:先由計(jì)算器給出0到9之間取整數(shù)值的隨機(jī)數(shù),指定0,1表示沒有擊中目標(biāo),2,3,4,5,6,7,8,9表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
7527 0293 7140 9857 0347 4373 8636 6947
1417 4698 0371 6233 2616 8045 6011 3661
9597 7424 7610 4281
根據(jù)以上數(shù)據(jù)估計(jì)該射擊運(yùn)動(dòng)員射擊4次至少擊中3次的概率為( )
A.0.852 B.0.819 2 C.0.8 D.0.75
答案:D 命題立意:本題主要考查隨機(jī)模擬法,考查考生的邏輯思維能力.
解題思路:因?yàn)樯鋼?次至多擊中2次對應(yīng)的隨機(jī)數(shù)組為7140,1417,0371,6011,7610,共5組,所以射擊4次至少擊中3次的概率為1-=0.75,故選D.
2.在菱形ABCD中,ABC=30°,BC=4,若在菱形ABCD內(nèi)任取一點(diǎn),則該點(diǎn)到四個(gè)頂點(diǎn)的距離均不小于1的概率是( )
A. 1/2B.2
C. -1D.1
答案:D 命題立意:本題主要考查幾何概型,意在考查考生的運(yùn)算求解能力.
解題思路:如圖,以菱形的四個(gè)頂點(diǎn)為圓心作半徑為1的圓,圖中陰影部分即為到四個(gè)頂點(diǎn)的距離均不小于1的區(qū)域,由幾何概型的概率計(jì)算公式可知,所求概率P==.
3.設(shè)集合A={1,2},B={1,2,3},分別從集合A和B中隨機(jī)取一個(gè)數(shù)a和b,確定平面上的一個(gè)點(diǎn)P(a,b),記“點(diǎn)P(a,b)落在直線x+y=n上”為事件Cn(2≤n≤5,nN) ,若事件Cn的概率最大,則n的所有可能值為( )
A.3 B.4 C.2和5 D.3和4
答案:D 解題思路:分別從集合A和B中隨機(jī)取出一個(gè)數(shù),確定平面上的一個(gè)點(diǎn)P(a,b),則有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6種情況,a+b=2的有1種情況,a+b=3的有2種情況,a+b=4的有2種情況,a+b=5的有1種情況,所以可知若事件Cn的概率最大,則n的所有可能值為3和4,故選D.
4.記a,b分別是投擲兩次骰子所得的數(shù)字,則方程x2-ax+2b=0有兩個(gè)不同實(shí)根的概率為( )
A. 3/4B.1/2
C. 1/3D.1/4
答案:B 解題思路:由題意知投擲兩次骰子所得的數(shù)字分別為a,b,則基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),…,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36個(gè).而方程x2-ax+2b=0有兩個(gè)不同實(shí)根的條件是a2-8b>0,因此滿足此條件的基本事件有:(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共有9個(gè),故所求的概率為=.
5.在區(qū)間內(nèi)隨機(jī)取兩個(gè)數(shù)分別為a,b,則使得函數(shù)f(x)=x2+2ax-b2+π2有零點(diǎn)的概率為( )
A.1- B.1- C.1- D.1-
答案:
B 解題思路:函數(shù)f(x)=x2+2ax-b2+π2有零點(diǎn),需Δ=4a2-4(-b2+π2)≥0,即a2+b2≥π2成立.而a,b[-π,π],建立平面直角坐標(biāo)系,滿足a2+b2≥π2的點(diǎn)(a,b)如圖陰影部分所示,所求事件的概率為P===1-,故選B.
6.袋中共有6個(gè)除了顏色外完全相同的球,其中有1個(gè)紅球、2個(gè)白球和3個(gè)黑球.從袋中任取兩球,兩球顏色為一白一黑的概率等于( )
A.5/6 B.11/12
C. 1/2D.3/4
答案:B 解題思路:將同色小球編號(hào),從袋中任取兩球,所有基本事件為:(紅,白1),(紅,白2),(紅,黑1),(紅,黑2),(紅,黑3),(白1,白2),(白1,黑1),(白1,黑2),(白1,黑3),(白2,黑1),(白2,黑2),(白2,黑3),(黑1,黑2),(黑1,黑3),(黑2,黑3),共有15個(gè)基本事件,而為一白一黑的共有6個(gè)基本事件,所以所求概率P==.故選B.