.幾何圖形分類
1體幾何圖形可以分為以下幾類:
第一類:柱體;
包括:圓柱和棱柱,棱柱又可分為直棱柱和斜棱柱,棱柱體按底面邊數(shù)的多少又可分為三棱柱、四棱柱、N棱柱;
棱柱體積統(tǒng)一等于底面面積乘以高,即V=SH,
第二類:錐體;
包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及N棱錐;
棱錐體積統(tǒng)一為V=SH/3,
第三類:球體;
此分類只包含球一種幾何體,
體積公式V=4πR3/3,
其他不常用分類:圓臺(tái)、棱臺(tái)、球冠等很少接觸到。
大多幾何體都由這些幾何體組成。
2 平面幾何圖形如何分類
a.圓形
b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規(guī)則四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六……
注:正方形既是矩形也是菱形
3.一元一次方程解法的一般步驟:
使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
一般解法:
(1)去分母:在方程兩邊都乘以各分母的最小公倍數(shù);
(2)去括號(hào):先去小括號(hào),再去中括號(hào),最后去大括號(hào);(記住如括號(hào)外有減號(hào)的話一定要變號(hào))
(3)移項(xiàng):把含有未知數(shù)的項(xiàng)都移到方程的一邊,其他項(xiàng)都移到方程的另一邊;移項(xiàng)要變號(hào)
(4)合并同類項(xiàng):把方程化成ax=b(a≠0)的形式;
(5)系數(shù)化成1:在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=b/a.
4.同解方程
如果兩個(gè)方程的解相同,那么這兩個(gè)方程叫做同解方程。
5.方程的同解原理:
(1)方程的兩邊都加或減同一個(gè)數(shù)或同一個(gè)等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個(gè)不為0的數(shù)所得的方程與原方程是同解方程。