华南俳烁实业有限公司

考試首頁 | 考試用書 | 培訓課程 | 模擬考場  
  當前位置: 中華考試網 >> 中考 >> 中考數學 >> 數學模擬題 >> 文章內容
  

2015年湖南中考數學考前精練6_第2頁

來源:中華考試網收藏本頁   【 】  [ 2015年5月11日 ]
二次函數

  1.A

  2.B 解析:利用反推法解答, 函數y=(x-1)2-4的頂點坐標為(1,-4),其向左平移2個單位長度,再向上平移3個單位長度,得到函數y=x2+bx+c,又∵1-2=-1,-4+3=-1,∴平移前的函數頂點坐標為(-1,-1),函數解析式為y=(x+1)2-1,即y=x2+2x,∴b=2,c=0.

  3.D 4.C 5.C 6.B

  7.k=0或k=-1 8.y=x2+1(答案不唯一)

  9.解:(1)∵拋物線y=-x2+bx+c經過點A(3,0),B(-1,0),

  ∴拋物線的解析式為y=-(x-3)(x+1),

  即y=-x2+2x+3.

  (2)∵y=-x2+2x+3=-(x-1)2+4,

  ∴拋物線的頂點坐標為(1,4).

  10.B 11.①③④

  12.解:(1)將點O(0,0)代入,解得m=±1,

  二次函數關系式為y=x2+2x或y=x2-2x.

  (2)當m=2時,y=x2-4x+3=(x-2)2-1,

  ∴D(2,-1).當x=0時,y=3,∴C(0,3).

  (3)存在.接連接C,D交x軸于點P,則點P為所求.

  由C(0,3),D(2,-1)求得直線CD為y=-2x+3.

  當y=0時,x=32,∴P32,0.

  13.解:(1)將M(-2,-2)代入拋物線解析式,得

  -2=1a(-2-2)(-2+a),

  解得a=4.

  (2)①由(1),得y=14(x-2)(x+4),

  當y=0時,得0=14(x-2)(x+4),

  解得x1=2,x2=-4.

  ∵點B在點C的左側,∴B(-4,0),C(2,0).

  當x=0時,得y=-2,即E(0,-2).

  ∴S△BCE=12×6×2=6.

 、谟蓲佄锞解析式y=14(x-2)(x+4),得對稱軸為直線x=-1,

  根據C與B關于拋物線對稱軸x=-1對稱,連接BE,與對稱軸交于點H,即為所求.

  設直線BE的解析式為y=kx+b,

  將B(-4,0)與E(0,-2)代入,得-4k+b=0,b=-2,

  解得k=-12,b=-2.∴直線BE的解析式為y=-12x-2.

  將x=-1代入,得y=12-2=-32,

  則點H-1,-32.

  14.(1)證明:∵二次函數y=mx2+nx+p圖象的頂點橫坐標是2,

  ∴拋物線的對稱軸為x=2,即-n2m=2,

  化簡,得n+4m=0.

  (2)解:∵二次函數y=mx2+nx+p與x軸交于A(x1,0),B(x2,0),x1<0

  ∴OA=-x1,OB=x2,x1+x2=-nm,x1•x2=pm.

  令x=0,得y=p,∴C(0,p).∴OC=|p|.

  由三角函數定義,得tan∠CAO=OCOA=-|p|x1,tan∠CBO=OCOB=|p|x2.

  ∵tan∠CAO-tan∠CBO=1,即-|p|x1-|p|x2=1.

  化簡,得x1+x2x1•x2=-1|p|.

  將x1+x2=-nm,x1•x2=pm代入,得-nmpm=-1|p|化簡,得⇒n=p|p|=±1.

  由(1)知n+4m=0,

  ∴當n=1時,m=-14;當n=-1時,m=14.

  ∴m,n的值為:m=14,n=-1(此時拋物線開口向上)或m=-14,n=1(此時拋物線開口向下).

  (3)解:由(2)知,當p>0時,n=1,m=-14,

  ∴拋物線解析式為:y=-14x2+x+p.

  聯立拋物線y=-14x2+x+p與直線y=x+3解析式得到-14x2+x+p=x+3,

  化簡,得x2-4(p-3)=0.

  ∵二次函數圖象與直線y=x+3僅有一個交點,

  ∴一元二次方程根的判別式等于0,

  即Δ=02+16(p-3)=0,解得p=3.

  ∴y=-14x2+x+3=-14(x-2)2+4.

  當x=2時,二次函數有最大值,最大值為4.

  15.解:(1)設此拋物線的解析式為y=a(x-3)2+4,

  此拋物線過點A(0,-5),

  ∴-5=a(0-3)2+4,∴a=-1.

  ∴拋物線的解析式為y=-(x-3)2+4,

  即y=-x2+6x-5.

  (2)拋物線的對稱軸與⊙C相離.

  證明:令y=0,即-x2+6x-5=0,得x=1或x=5,

  ∴B(1,0),C(5,0).

  設切點為E,連接CE,

  由題意,得,Rt△ABO∽Rt△BCE.

  ∴ABBC=OBCE,即12+524=1CE,

  解得CE=426.

  ∵以點C為圓心的圓與直線BD相切,⊙C的半徑為r=d=426.

  又點C到拋物線對稱軸的距離為5-3=2,而2>426.

  則此時拋物線的對稱軸與⊙C相離.

  (3)假設存在滿足條件的點P(xp,yp),

  ∵A(0,-5),C(5,0),

  ∴AC2=50,

  AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.

 、佼敗螦=90°時,在Rt△CAP中,

  由勾股定理,得AC2+AP2=CP2,

  ∴50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,

  整理,得xp+yp+5=0.

  ∵點P(xp,yp)在拋物線y=-x2+6x-5上,

  ∴yp=-x2p+6xp-5.

  ∴xp+(-x2p+6xp-5)+5=0,

  解得xp=7或xp=0,∴yp=-12或yp=-5.

  ∴點P為(7,-12)或(0,-5)(舍去).

 、诋敗螩=90°時,在Rt△ACP中,

  由勾股定理,得AC2+CP2=AP2,

  ∴50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,

  整理,得xp+yp-5=0.

  ∵點P(xp,yp)在拋物線y=-x2+6x-5上,

  ∴yp=-x2p+6xp-5,

  ∴xp+(-x2p+6xp-5)-5=0,

  解得xp=2或xp=5,∴yp=3或yp=0.

  ∴點P為(2,3)或(5,0)(舍去)

  綜上所述,滿足條件的點P的坐標為(7,-12)或(2,3).第二部分 空間與圖形

首頁 1 2 尾頁
我要提問】【本文糾錯】【告訴好友】【打印此文】【返回頂部
將中華自考網添加到收藏夾 | 每次上網自動訪問中華自考網 | 復制本頁地址,傳給QQ/MSN上的好友 | 申請鏈接 TOP
關于本站  網站聲明  廣告服務  聯系方式  站內導航
Copyright © 2006-2019 中華考試網(Examw.com) All Rights Reserved 營業(yè)執(zhí)照
东至县| 靖宇县| 营山县| 北辰区| 二连浩特市| 泗水县| 滦平县| 台东县| 疏附县| 紫阳县| 贵溪市| 铜川市| 南漳县| 武平县| 德清县| 山阳县| 金华市| 柳州市| 嘉义县| 卢湾区| 泸州市| 石屏县| 福安市| 理塘县| 上林县| 陆河县| 思茅市| 富平县| 济源市| 米脂县| 株洲县| 讷河市| 库车县| 白银市| 简阳市| 铜山县| 习水县| 利辛县| 仁怀市| 安多县| 岐山县|