同余式和不定方程是數(shù)論中古老而富有魅力的內(nèi)容.考慮數(shù)學(xué)競(jìng)賽的需要,下面介紹有關(guān)的基本內(nèi)容.
1.同余式及其應(yīng)用
定義:設(shè)a、b、m為整數(shù)(m>0),若a和b被m除得的余數(shù)相同,則稱a和b對(duì)模m同余.記為a=b(modm)或a=b(m)一切整數(shù)n可以按照某個(gè)自然數(shù)m作為除數(shù)的余數(shù)進(jìn)行分類,即n=pm+r(r=0,1,…,m-1),恰好m個(gè)數(shù)類.于是同余的概念可理解為,若對(duì)n1、n2,有n1=q1m+r,n2=q2m+r,那么n1、n2
對(duì)模m的同余,即它們用m除所得的余數(shù)相等.
利用整數(shù)的剩余類表示,可以證明同余式的下述簡(jiǎn)單性質(zhì):