12.G是△ABC的重心,以AG為弦作圓切BG于G,延長CG交圓于D。求證:AG2=GC·GD。
【分析】
【評注】平移變換
13.C是直徑AB=2的⊙O上一點(diǎn),P在△ABC內(nèi),若PA+PB+PC的最小值是 ,求此時△ABC的面積S。
【分析】
【評注】旋轉(zhuǎn)變換
費(fèi)馬點(diǎn): 已知O是△ABC內(nèi)一點(diǎn),∠AOB=∠BOC=∠COA=120°;P是△ABC內(nèi)任一點(diǎn),求證:PA+PB+PC≥OA+OB+OC。(O為費(fèi)馬點(diǎn))
【分析】將C C‘,O O’, P P‘,連結(jié)OO’、PP‘。則△B OO’、△B PP‘都是正三角形。
∴OO’=OB,PP‘=PB。顯然△BO’C‘≌△BOC,△BP’C‘≌△BPC。
由于∠BO’C‘=∠BOC=120°=180°-∠BO’O,∴A、O、O‘、C’四點(diǎn)共線。
∴AP+PP‘+P’C‘≥AC’=AO+OO‘+O’C‘,即PA+PB+PC≥OA+OB+OC。
14.(95全國競賽) 菱形ABCD的內(nèi)切圓O與各邊分別交于E、F、G、H,在弧EF和弧GH上分別作⊙O的切線交AB、BC、CD、DA分別于M、N、P、Q。
求證:MQ//NP。
【分析】由AB∥CD 知:要證MQ∥NP,只需證∠AMQ=∠CPN,
結(jié)合∠A=∠C知,只需證
△AMQ∽△CPN
← ,AM·CN=AQ·CP。
連結(jié)AC、BD,其交點(diǎn)為內(nèi)切圓心O。設(shè)MN與⊙O切于K,連結(jié)OE、OM、OK、ON、OF。記∠ABO=φ,∠MOK=α,∠KON=β,則
∠EOM=α,∠FON=β,∠EOF=2α+2β=180°-2φ。
∴∠BON=90°-∠NOF-∠COF=90°-β-φ=α
∴∠CNO=∠NBO+∠NOB=φ+α=∠AOE+∠MOE=∠AOM
又∠OCN=∠MAO,∴△OCN∽△MAO,于是 ,
∴AM·CN=AO·CO
同理,AQ·CP=AO·CO。
【評注】
15.(96全國競賽)⊙O1和⊙O2與ΔABC的三邊所在直線都相切,E、F、G、H為切點(diǎn),EG、FH的延長線交于P。 求證:PA⊥BC。
【分析】
【評注】
16.(99全國競賽)如圖,在四邊形ABCD中,對角線AC平分∠BAD。在CD上取一點(diǎn)E,BE與AC相交于F,延長DF交BC于G。求證:∠GAC=∠EAC。
證明:連結(jié)BD交AC于H。對△BCD用塞瓦定理,可得 因為AH是∠BAD的角平分線,由角平分線定理,
可得 ,故 。
過C作AB的平行線交AG的延長線于I,過C作AD的平行線交AE的延長線于J。
則 ,
所以 ,從而CI=CJ。
又因為CI//AB,CJ//AD,故∠ACI=π-∠BAC=π-∠DAC=∠ACJ。
因此,△ACI≌△ACJ,從而∠IAC=∠JAC,即∠GAC=∠EAC。
已知AB=AD,BC=DC,AC與BD交于O,過O的任意兩條直線EF和GH與四邊形ABCD的四邊交于E、F、G、H。連結(jié)GF、EH,分別交BD于M、N。求證:OM=ON。(5屆CMO)
證明:作△EOH △E’OH‘,則只需證E’、M、H‘共線,即E’H‘、BO、GF三線共點(diǎn)。
記∠BOG=α,∠GOE’=β。連結(jié)E‘F交BO于K。只需證 =1(Ceva逆定理)。
= = =1
注:箏形:一條對角線垂直平分另一條對角線的四邊形。
對應(yīng)于99聯(lián)賽2:∠E’OB=∠FOB,且E‘H’、GF、BO三線共點(diǎn)。求證:∠GOB=∠H‘OB。
事實上,上述條件是充要條件,且M在OB延長線上時結(jié)論仍然成立。
證明方法為:同一法。
蝴蝶定理:P是⊙O的弦AB的中點(diǎn),過P點(diǎn)引⊙O的兩弦CD、EF,連結(jié)DE交AB于M,連結(jié)CF交AB于N。求證:MP=NP。
【分析】設(shè)GH為過P的直徑,F(xiàn) F’F,顯然‘∈⊙O。又P∈GH,∴PF’=PF。∵PF PF‘,PA PB,∴∠FPN=∠F’PM,PF=PF‘。
又FF’⊥GH,AN⊥GH,∴FF‘∥AB!唷螰’PM+∠MDF‘=∠FPN+∠EDF’
=∠EFF‘+∠EDF’=180°,∴P、M、D、F‘四點(diǎn)共圓!唷螾F’M=∠PDE=∠PFN。
∴△PFN≌△PF‘M,PN=PM。
【評注】一般結(jié)論為:已知半徑為R的⊙O內(nèi)一弦AB上的一點(diǎn)P,過P作兩條相交弦CD、EF,連CF、ED交AB于M、N,已知OP=r,P到AB中點(diǎn)的距離為a,則 。(解析法證明:利用二次曲線系知識)