某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py
弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r
數(shù)學(xué)公式
開(kāi)放分類(lèi): 數(shù)學(xué)、概念
數(shù)學(xué)公式,是表征自然界不同事物之?dāng)?shù)量之間的或等或不等的聯(lián)系,它確切的反映了事物內(nèi)部和外部的關(guān)系,是我們 從一種事物到達(dá)另一種事物的依據(jù),使我們更好的理解事物的本質(zhì)和內(nèi)涵。
如一些基本公式
拋物線:y = ax* + bx + c 就是y等于ax 的平方加上 bx再加上 c
a > 0時(shí)開(kāi)口向上 a < 0時(shí)開(kāi)口向下 c = 0時(shí)拋物線經(jīng)過(guò)原點(diǎn)
b = 0時(shí)拋物線對(duì)稱(chēng)軸為y軸
還有頂點(diǎn)式y(tǒng) = a(x-h)* + k 就是y等于a乘以(x-h)的平方+k
h是頂點(diǎn)坐標(biāo)的x k是頂點(diǎn)坐標(biāo)的y
一般用于求最大值與最小值
拋物線標(biāo)準(zhǔn)方程:y^2=2px
它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0) 準(zhǔn)線方程為x=-p/2
由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圓:體積=4/3(pi)(r^3) 面積=(pi)(r^2) 周長(zhǎng)=2(pi)r
圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
公式分類(lèi) 公式表達(dá)式
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a