Until about five years ago, the very idea that peptide hormones might be made anywhere in the brain besides the hypothalamus was astounding. Peptide hormones, scientists thought, were made by endocrine glands and the hypothalamus was thought to be the brains’ only endocrine gland. What is more, because peptide hormones cannot cross the blood-brain barrier, researchers believed that they never got to any part of the brain other than the hypothalamus, where they were simply produced and then released into the bloodstream.
But these beliefs about peptide hormones were questioned as laboratory after laboratory found that antiserums to peptide hormones, when injected into the brain, bind in places other than the hypothalamus, indicating that either the hormones or substances that cross-react with the antiserums are present. The immunological method of detecting peptide hormones by means of antiserums, however, is imprecise. Cross-reactions are possible and this method cannot determine whether the substances detected by the antiserums really are the hormones, or merely close relatives. Furthermore, this method cannot be used to determine the location in the body where the detected substances are actually produced.
New techniques of molecular biology, however, provide a way to answer these questions. It is possible to make specific complementary DNA’s (c DNA’s) that can serve as molecular probes seek out the messenger RNA’s (mRNA’s) of the peptide hormones. If brain cells are making the hormones, the cells will contain these mRNA’s. If the products the brain cells make resemble the hormones but are not identical to them, then the c DNA’s should still bind to these mRNA’s, but should not bind as tightly as they would to m RNA’s for the true hormones. The cells containing these mRNA’s can then be isolated and their mRNA’s decoded to determine just what their protein products are and how closely the products resemble the true peptide hormones.
The molecular approach to detecting peptide hormones using cDNA probes should also be much faster than the immunological method because it can take years of tedious purifications to isolate peptide hormones and then develop antiserums to them. Roberts, expressing the sentiment of many researchers, states: “I was trained as an endocrinologist. But it became clear to me that the field of endocrinology needed molecular biology input. The process of grinding out protein purifications is just too slow.”
If, as the initial tests with cDNA probes suggest, peptide hormones really are made in brain in areas other than the hypothalamus, a theory must be developed that explains their function in the brain. Some have suggested that the hormones are all growth regulators, but Rosen’s work on rat brains indicates that this cannot be true. A number of other researchers propose that they might be used for intercellular communication in the brain.
1. Which of the following titles best summarizes the text?
[A] Is Molecular Biology the Key to Understanding Intercellular Communication in the Brain?
[B] Molecular Biology: Can Researchers Exploit Its Techniques to Synthesize Peptide Hormones?
[C] The Advantages and Disadvantages of the Immunological Approach to Detecting Peptide Hormones.
[D] Peptide Hormones: How Scientists Are Attempting to Solve Problems of Their Detection and to Understand Their Function?
2. The text suggests that a substance detected in the brain by use of antiserums to peptide hormones may
[A] have been stored in the brain for a long period of time.
[B] play no role in the functioning of the brain.
[C] have been produced in some part of the body other than the brain.
[D] have escaped detection by molecular methods.
3. According to the text, confirmation of the belief that peptide hormones are created in the brain in areas other than the hypothalamus would force scientists to
[A] reject the theory that peptide hormones are made by endocrine glands.
[B] revise their beliefs about the ability of antiserums to detect peptide hormones.
[C] invent techniques that would allow them to locate accurately brain cells that produce peptide hormones.
[D] develop a theory that account for the role played by peptide hormones in the brain.
4. Which of the following is mentioned in the text as a drawback of the immunological method of detecting peptide hormones?
[A] It cannot be used to detect the presence of growth regulators in the brain.
[B] It cannot distinguish between the peptide hormones and substances that are very similar to them.
[C] It uses antiserums that are unable to cross the blood-brain barrier.
[D] It involves a purification process that requires extensive training in endocrinology.
5. The idea that the field of endocrinology can gain from developments in molecular biology is regarded by Roberts with
[A] incredulity.
[B] derision.
[C] indifference.
[D] enthusiasm.
初級會計職稱中級會計職稱經(jīng)濟師注冊會計師證券從業(yè)銀行從業(yè)會計實操統(tǒng)計師審計師高級會計師基金從業(yè)資格稅務師資產(chǎn)評估師國際內(nèi)審師ACCA/CAT價格鑒證師統(tǒng)計資格從業(yè)
一級建造師二級建造師消防工程師造價工程師土建職稱房地產(chǎn)經(jīng)紀人公路檢測工程師建筑八大員注冊建筑師二級造價師監(jiān)理工程師咨詢工程師房地產(chǎn)估價師 城鄉(xiāng)規(guī)劃師結(jié)構(gòu)工程師巖土工程師安全工程師設(shè)備監(jiān)理師環(huán)境影響評價土地登記代理公路造價師公路監(jiān)理師化工工程師暖通工程師給排水工程師計量工程師
執(zhí)業(yè)藥師執(zhí)業(yè)醫(yī)師衛(wèi)生資格考試衛(wèi)生高級職稱護士資格證初級護師主管護師住院醫(yī)師臨床執(zhí)業(yè)醫(yī)師臨床助理醫(yī)師中醫(yī)執(zhí)業(yè)醫(yī)師中醫(yī)助理醫(yī)師中西醫(yī)醫(yī)師中西醫(yī)助理口腔執(zhí)業(yè)醫(yī)師口腔助理醫(yī)師公共衛(wèi)生醫(yī)師公衛(wèi)助理醫(yī)師實踐技能內(nèi)科主治醫(yī)師外科主治醫(yī)師中醫(yī)內(nèi)科主治兒科主治醫(yī)師婦產(chǎn)科醫(yī)師西藥士/師中藥士/師臨床檢驗技師臨床醫(yī)學理論中醫(yī)理論