华南俳烁实业有限公司

考研

各地資訊
當(dāng)前位置:華課網(wǎng)校 >> 考研 >> 考研數(shù)學(xué) >> 數(shù)學(xué)指導(dǎo) >> 文章內(nèi)容

2018年考研農(nóng)學(xué)數(shù)學(xué)考試考點

來源:華課網(wǎng)校  [2017年8月17日]  【

  數(shù)學(xué)

  I.考試性質(zhì)

  農(nóng)學(xué)門類聯(lián)考數(shù)學(xué)是為高等院校和科研院所招收農(nóng)學(xué)門類的碩士研究生而設(shè)置的具有選拔性質(zhì)的全國聯(lián)考科目。其目的是科學(xué)、公平、有效地測試考生是否具備繼續(xù)攻讀農(nóng)學(xué)門類各專業(yè)碩士學(xué)位所需要的知識和能力要求,評價的標(biāo)準(zhǔn)是高等學(xué)校農(nóng)學(xué)學(xué)科優(yōu)秀本科畢業(yè)生所能達到的及格或及格以上水平,以利于各高等院校和科研院所擇優(yōu)選拔,確保碩士研究生的招生質(zhì)量。

  II.考查目標(biāo)

  農(nóng)學(xué)門類數(shù)學(xué)考試涵蓋高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計等公共基礎(chǔ)課程。要求考生比較系統(tǒng)地理解數(shù)學(xué)的基本概念和基本理論,掌握數(shù)學(xué)的基本方法,具備抽象思維能力、邏輯推理能力、空間想象能力、運算能力以及綜合運用所學(xué)的知識分析問題和解決問題的能力。

  III.考試形式和試卷結(jié)構(gòu)

  一、試卷滿分及考試時間

  試卷滿分為150分,考試時間為180分鐘.

  二、答題方式

  答題方式為閉卷、筆試.

  三、試卷內(nèi)容結(jié)構(gòu)

  高等數(shù)學(xué)56%

  線性代數(shù)22%

  概率論與數(shù)理統(tǒng)計22%

  四、試卷題型結(jié)構(gòu)

  單項選擇題8小題,每小題4分,共32分

  填空題6小題,每小題4分,共24分

  解答題(包括證明題)9小題,共94分

 、.考查內(nèi)容

  高等數(shù)學(xué)

  一、函數(shù)、極限、連續(xù)

  考試內(nèi)容

  函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)函數(shù)關(guān)系的建立

  數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限和右極限無窮小量和無窮大量的概念及其關(guān)系無窮小量的性質(zhì)及無窮小量的比較極限的四則運算極限存在的兩個準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則兩個重要極限:

  函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)

  考試要求

  1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應(yīng)用問題中的函數(shù)關(guān)系.

  2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.

  3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.

  4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.

  5.了解數(shù)列極限和函數(shù)極限(包括左極限和右極限)的概念.

  6.了解極限的性質(zhì)與極限存在的兩個準(zhǔn)則,掌握極限的四則運算法則,掌握利用兩個重要極限求極限的方法.

  7.理解無窮小量的概念和基本性質(zhì),掌握無窮小量的比較方法,了解無窮大量的概念及其與無窮小量的關(guān)系.

  8.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判斷函數(shù)間斷點的類型.

  9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應(yīng)用這些性質(zhì).

  二、一元函數(shù)微分學(xué)

  考試內(nèi)容

  導(dǎo)數(shù)和微分的概念導(dǎo)數(shù)的幾何意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線和法線導(dǎo)數(shù)和微分的四則運算基本初等函數(shù)的導(dǎo)數(shù)復(fù)合函數(shù)和隱函數(shù)的微分法高階導(dǎo)數(shù)微分中值定理洛必達(L’Hospital)法則函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)的最大值與最小值

  考試要求

  1.理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程.

  2.掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運算法則及復(fù)合函數(shù)的求導(dǎo)法則,會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)的導(dǎo)數(shù).

  3.了解高階導(dǎo)數(shù)的概念,掌握二階導(dǎo)數(shù)的求法.

  4.了解微分的概念以及導(dǎo)數(shù)與微分之間的關(guān)系,會求函數(shù)的微分.

  5.理解羅爾(Rolle)定理和拉格朗日(Lagrange)中值定理,掌握這兩個定理的簡單應(yīng)用.

  6.會用洛必達法則求極限.

  7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及應(yīng)用.

  8.會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性[注:在區(qū)間(a,b)內(nèi),設(shè)函數(shù)f(x)具有二階導(dǎo)數(shù).當(dāng)時,f(x)的圖形是凹的;當(dāng)時,f(x)的圖形是凸的],會求函數(shù)圖形的拐點和漸近線(水平、鉛直漸近線).

  三、一元函數(shù)積分學(xué)

  考試內(nèi)容

  原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理積分上限的函數(shù)與其導(dǎo)數(shù)牛頓-萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分方法與分部積分法反常(廣義)積分定積分的應(yīng)用

  考試要求

  1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)與基本積分公式,掌握不定積分的換元積分法與分部積分法.

  2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會求它的導(dǎo)數(shù),掌握牛頓萊布尼茨公式,以及定積分的換元積分法與分部積分法.

  3.會利用定積分計算平面圖形的面積和旋轉(zhuǎn)體的體積.

  4.了解無窮區(qū)間上的反常積分的概念,會計算無窮區(qū)間上的反常積分.

  四、多元函數(shù)微積分學(xué)

  考試內(nèi)容

  多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念多元函數(shù)偏導(dǎo)數(shù)的概念與計算多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法二階偏導(dǎo)數(shù)全微分多元函數(shù)的極值和條件極值二重積分的概念、基本性質(zhì)和計算

1 2
責(zé)編:18874849045

報考指南

  • 考研真題
  • 模擬試題
  • 考研備考
  • 學(xué)歷考試
  • 會計考試
  • 建筑工程
  • 職業(yè)資格
  • 醫(yī)藥考試
  • 外語考試
  • 外貿(mào)考試
  • 計算機類
彭阳县| 河东区| 赫章县| 阳泉市| 运城市| 沁源县| 屏东市| 吴旗县| 平塘县| 黔江区| 平湖市| 保定市| 江口县| 淳安县| 察雅县| 石狮市| 杭锦后旗| 新龙县| 盐山县| 海兴县| 沈丘县| 贵港市| 金川县| 凤庆县| 河西区| 长沙县| 枝江市| 安阳县| 荣成市| 响水县| 襄汾县| 巴里| 开化县| 西华县| 太原市| 石泉县| 崇州市| 石家庄市| 济宁市| 乐业县| 务川|