华南俳烁实业有限公司

考研

各地資訊
當(dāng)前位置:華課網(wǎng)校 >> 考研 >> 考研數(shù)學(xué) >> 數(shù)學(xué)指導(dǎo) >> 文章內(nèi)容

2018考研數(shù)學(xué)9個重要證明定理

來源:華課網(wǎng)校  [2017年5月3日]  【

  費馬引理、羅爾定理、拉格朗日定理、柯西定理、泰勒中值定理、求導(dǎo)公式、積分中值定理、變限積分求導(dǎo)定理、牛頓-萊布尼茨公式是高等數(shù)學(xué)部分大家要掌握的定理證明,下面我們一起來看看該如何來證:

  高數(shù)定理證明之微分中值定理:

  這一部分內(nèi)容比較豐富,包括費馬引理、羅爾定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求會證。

  費馬引理的條件有兩個:1.f'(x0)存在2.f(x0)為f(x)的極值,結(jié)論為f'(x0)=0?紤]函數(shù)在一點的導(dǎo)數(shù),用什么方法?自然想到導(dǎo)數(shù)定義。我們可以按照導(dǎo)數(shù)定義寫出f'(x0)的極限形式。往下如何推理?關(guān)鍵要看第二個條件怎么用。“f(x0)為f(x)的極值”翻譯成數(shù)學(xué)語言即f(x)-f(x0)<0(或>0),對x0的某去心鄰域成立。結(jié)合導(dǎo)數(shù)定義式中函數(shù)部分表達式,不難想到考慮函數(shù)部分的正負號。若能得出函數(shù)部分的符號,如何得到極限值的符號呢?極限的保號性是個橋梁。

  費馬引理中的“引理”包含著引出其它定理之意。那么它引出的定理就是我們下面要討論的羅爾定理。若在微分中值定理這部分推舉一個考頻最高的,那羅爾定理當(dāng)之無愧。該定理的條件和結(jié)論想必各位都比較熟悉。條件有三:“閉區(qū)間連續(xù)”、“開區(qū)間可導(dǎo)”和“端值相等”,結(jié)論是在開區(qū)間存在一點(即所謂的中值),使得函數(shù)在該點的導(dǎo)數(shù)為0。

  該定理的證明不好理解,需認真體會:條件怎么用?如何和結(jié)論建立聯(lián)系?當(dāng)然,我們現(xiàn)在討論該定理的證明是“馬后炮”式的:已經(jīng)有了證明過程,我們看看怎么去理解掌握。如果在羅爾生活的時代,證出該定理,那可是十足的創(chuàng)新,是要流芳百世的。

  閑言少敘,言歸正傳。既然我們討論費馬引理的作用是要引出羅爾定理,那么羅爾定理的證明過程中就要用到費馬引理。我們對比這兩個定理的結(jié)論,不難發(fā)現(xiàn)是一致的:都是函數(shù)在一點的導(dǎo)數(shù)為0。話說到這,可能有同學(xué)要說:羅爾定理的證明并不難呀,由費馬引理得結(jié)論不就行了。大方向?qū)Γ^程沒這么簡單。起碼要說清一點:費馬引理的條件是否滿足,為什么滿足?

  前面提過費馬引理的條件有兩個——“可導(dǎo)”和“取極值”,“可導(dǎo)”不難判斷是成立的,那么“取極值”呢?似乎不能由條件直接得到。那么我們看看哪個條件可能和極值產(chǎn)生聯(lián)系。注意到羅爾定理的第一個條件是函數(shù)在閉區(qū)間上連續(xù)。我們知道閉區(qū)間上的連續(xù)函數(shù)有很好的性質(zhì),哪條性質(zhì)和極值有聯(lián)系呢?不難想到最值定理。

  那么最值和極值是什么關(guān)系?這個點需要想清楚,因為直接影響下面推理的走向。結(jié)論是:若最值取在區(qū)間內(nèi)部,則最值為極值;若最值均取在區(qū)間端點,則最值不為極值。那么接下來,分兩種情況討論即可:若最值取在區(qū)間內(nèi)部,此種情況下費馬引理條件完全成立,不難得出結(jié)論;若最值均取在區(qū)間端點,注意到已知條件第三條告訴我們端點函數(shù)值相等,由此推出函數(shù)在整個閉區(qū)間上的最大值和最小值相等,這意味著函數(shù)在整個區(qū)間的表達式恒為常數(shù),那在開區(qū)間上任取一點都能使結(jié)論成立。

  拉格朗日定理和柯西定理是用羅爾定理證出來的。掌握這兩個定理的證明有一箭雙雕的效果:真題中直接考過拉格朗日定理的證明,若再考這些原定理,那自然駕輕就熟;此外,這兩個的定理的證明過程中體現(xiàn)出來的基本思路,適用于證其它結(jié)論。

  以拉格朗日定理的證明為例,既然用羅爾定理證,那我們對比一下兩個定理的結(jié)論。羅爾定理的結(jié)論等號右側(cè)為零。我們可以考慮在草稿紙上對拉格朗日定理的結(jié)論作變形,變成羅爾定理結(jié)論的形式,移項即可。接下來,要從變形后的式子讀出是對哪個函數(shù)用羅爾定理的結(jié)果。這就是構(gòu)造輔助函數(shù)的過程——看等號左側(cè)的式子是哪個函數(shù)求導(dǎo)后,把x換成中值的結(jié)果。這個過程有點像犯罪現(xiàn)場調(diào)查:根據(jù)這個犯罪現(xiàn)場,反推嫌疑人是誰。當(dāng)然,構(gòu)造輔助函數(shù)遠比破案要簡單,簡單的題目直接觀察;復(fù)雜一些的,可以把中值換成x,再對得到的函數(shù)求不定積分。

  高數(shù)定理證明之求導(dǎo)公式:

  2015年真題考了一個證明題:證明兩個函數(shù)乘積的導(dǎo)數(shù)公式。幾乎每位同學(xué)都對這個公式怎么用比較熟悉,而對它怎么來的較為陌生。實際上,從授課的角度,這種在2015年前從未考過的基本公式的證明,一般只會在基礎(chǔ)階段講到。如果這個階段的考生帶著急功近利的心態(tài)只關(guān)注結(jié)論怎么用,而不關(guān)心結(jié)論怎么來的,那很可能從未認真思考過該公式的證明過程,進而在考場上變得很被動。這里給2017考研學(xué)子提個醒:要重視基礎(chǔ)階段的復(fù)習(xí),那些真題中未考過的重要結(jié)論的證明,有可能考到,不要放過。

  當(dāng)然,該公式的證明并不難。先考慮f(x)*g(x)在點x0處的導(dǎo)數(shù)。函數(shù)在一點的導(dǎo)數(shù)自然用導(dǎo)數(shù)定義考察,可以按照導(dǎo)數(shù)定義寫出一個極限式子。該極限為“0分之0”型,但不能用洛必達法則,因為分子的導(dǎo)數(shù)不好算(乘積的導(dǎo)數(shù)公式恰好是要證的,不能用!)。利用數(shù)學(xué)上常用的拼湊之法,加一項,減一項。這個“無中生有”的項要和前后都有聯(lián)系,便于提公因子。之后分子的四項兩兩配對,除以分母后考慮極限,不難得出結(jié)果。再由x0的任意性,便得到了f(x)*g(x)在任意點的導(dǎo)數(shù)公式。

1 2
責(zé)編:18874849045

報考指南

  • 考研真題
  • 模擬試題
  • 考研備考
  • 學(xué)歷考試
  • 會計考試
  • 建筑工程
  • 職業(yè)資格
  • 醫(yī)藥考試
  • 外語考試
  • 外貿(mào)考試
  • 計算機類
潞城市| 新余市| 上饶市| 济宁市| 改则县| 平泉县| 阳春市| 满城县| 年辖:市辖区| 浮山县| 稻城县| 新沂市| 文成县| 鹤壁市| 乾安县| 泌阳县| 永州市| 固阳县| 大名县| 思南县| 北流市| 双牌县| 云南省| 咸丰县| 沁阳市| 大竹县| 平利县| 临桂县| 睢宁县| 微山县| 府谷县| 大城县| 五莲县| 英山县| 武平县| 弋阳县| 工布江达县| 塘沽区| 区。| 开封县| 广宗县|