华南俳烁实业有限公司

考研

各地資訊
當(dāng)前位置:華課網(wǎng)校 >> 考研 >> 考研數(shù)學(xué) >> 數(shù)學(xué)指導(dǎo) >> 文章內(nèi)容

2018考研數(shù)學(xué)三步搞定證明題

來源:華課網(wǎng)校  [2017年4月27日]  【

  考研數(shù)學(xué)中證明題的分值在12分左右,我們?nèi)绾尾拍鼙M可能的拿到高的分值呢?下面就看看這三個步驟吧:

  1、結(jié)合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準則等基本原理,包括條件及結(jié)論。

  知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。

  只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。

  這個題目非常簡單,只用了極限存在的兩個準則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,"單調(diào)性"與"有界性"都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。

  2、借助幾何意義尋求證明思路

  一個證明題,大多時候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。

  如2007年數(shù)學(xué)一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。

  再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點存在定理的證明題,只要在直角坐標系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。

  從圖形也應(yīng)該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。

  3、逆推法

  從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。

  在判定函數(shù)的單調(diào)性時需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。

責(zé)編:18874849045

報考指南

  • 考研真題
  • 模擬試題
  • 考研備考
  • 學(xué)歷考試
  • 會計考試
  • 建筑工程
  • 職業(yè)資格
  • 醫(yī)藥考試
  • 外語考試
  • 外貿(mào)考試
  • 計算機類
天峻县| 金川县| 兴业县| 徐水县| 汾阳市| 建始县| 日照市| 永定县| 昌平区| 玉山县| 潞城市| 吴忠市| 凤冈县| 汉川市| 宿州市| 延安市| 桐庐县| 仁寿县| 门源| 乌兰浩特市| 曲水县| 通州区| 横峰县| 荔波县| 奎屯市| 景谷| 高阳县| 鹤岗市| 武宁县| 珲春市| 定州市| 三江| 兴安县| 安福县| 潞城市| 隆子县| 茶陵县| 灵寿县| 锡林郭勒盟| 旬阳县| 广昌县|