华南俳烁实业有限公司

考研

各地資訊
當(dāng)前位置:華課網(wǎng)校 >> 考研 >> 考研數(shù)學(xué) >> 數(shù)學(xué)指導(dǎo) >> 文章內(nèi)容

2018考研高數(shù)復(fù)習(xí):前兩章10個易錯點(diǎn)整理

來源:華課網(wǎng)校  [2017年2月3日]  【

  1.函數(shù)連續(xù)是函數(shù)極限存在的充分條件。若函數(shù)在某點(diǎn)連續(xù),則該函數(shù)在該點(diǎn)必有極限。若函數(shù)在某點(diǎn)不連續(xù),則該函數(shù)在該點(diǎn)不一定無極限。

  2,若函數(shù)在某點(diǎn)可導(dǎo),則函數(shù)在該點(diǎn)一定連續(xù)。但是如果函數(shù)不可導(dǎo),不能推出函數(shù)在該點(diǎn)一定不連續(xù)。

  3. 基本初等函數(shù)在其定義域內(nèi)是連續(xù)的,而初等函數(shù)在其定義區(qū)間上是連續(xù)的。

  4.在一元函數(shù)中,駐點(diǎn)可能是極值點(diǎn),也可能不是極值點(diǎn)。函數(shù)的極值點(diǎn)必是函數(shù)的駐點(diǎn)或?qū)?shù)不存在的點(diǎn)。

  5. 設(shè)函數(shù)y=f(x)在x=a處可導(dǎo),則函數(shù)y=f(x)的絕對值在x=a處不可導(dǎo)的充分條件是: f(a)=0,f'(a)≠0

  6.無窮小量與有界變量之積仍是無窮小量。

  7.可導(dǎo)是對定義域內(nèi)的點(diǎn)而言的,處處可導(dǎo)則存在導(dǎo)函數(shù), 只要一個函數(shù)在定義域內(nèi)某一點(diǎn)不可導(dǎo),那么就不存在導(dǎo)函數(shù),即使該函數(shù)在其它各處均可導(dǎo)。

  8.在求極限的問題中,極限包括函數(shù)的極限和數(shù)列的極限,但在考試中一般出的都是函數(shù)的極限,求函數(shù)的極限中,主要是掌握公式,有些不常見的公式一定要記熟,這種類型的題一般屬于簡單題,但往更難一點(diǎn)的方向出題的話,它會和變上限的定積分聯(lián)系在一起出題。

  9.在運(yùn)用兩個重要極限求函數(shù)極限的時候,一定要首先把所求的式子變換成類似于兩個重要極限的形式,其次還需要看自變量的取極限的范圍是否和兩個重要極限一樣。

  10.介值定理和零點(diǎn)定理的巧妙運(yùn)用關(guān)鍵在于,觀察和變換所要證明的式子的形式,構(gòu)造輔助函數(shù)。

責(zé)編:tanhuifang

報(bào)考指南

  • 考研真題
  • 模擬試題
  • 考研備考
  • 學(xué)歷考試
  • 會計(jì)考試
  • 建筑工程
  • 職業(yè)資格
  • 醫(yī)藥考試
  • 外語考試
  • 外貿(mào)考試
  • 計(jì)算機(jī)類
漾濞| 阳东县| 长葛市| 扶绥县| 潼南县| 琼海市| 通许县| 宁阳县| 克东县| 阿巴嘎旗| 东乌珠穆沁旗| 抚远县| 河西区| 天等县| 双江| 永济市| 神农架林区| 寿光市| 常宁市| 梁平县| 木里| 富蕴县| 奉贤区| 响水县| 衡水市| 文水县| 搜索| 紫云| 龙胜| 嘉义县| 和田市| 靖西县| 安义县| 长岭县| 安新县| 称多县| 亳州市| 全州县| 桓仁| 虎林市| 晋中市|