华南俳烁实业有限公司

考研

各地資訊
當(dāng)前位置:華課網(wǎng)校 >> 考研 >> 考研數(shù)學(xué) >> 數(shù)學(xué)指導(dǎo) >> 文章內(nèi)容

2017考研數(shù)學(xué):導(dǎo)數(shù)含義及計(jì)算解讀

來源:華課網(wǎng)校  [2016年3月15日]  【

  導(dǎo)數(shù)是考研數(shù)學(xué)高等數(shù)學(xué)部分要復(fù)習(xí)的重點(diǎn)內(nèi)容,數(shù)學(xué)第一輪復(fù)習(xí)看課本的時候要多多注意,并配合練習(xí),下面就詳細(xì)著重的談?wù)勱P(guān)于導(dǎo)數(shù)的含義出題點(diǎn)及導(dǎo)數(shù)的計(jì)算問題,2107考生可以看看。

  ▶理解并牢記導(dǎo)數(shù)定義

  導(dǎo)數(shù)定義是考研數(shù)學(xué)的出題點(diǎn),大部分以選擇題的形式出題,不會直接教材上的導(dǎo)數(shù)充要條件,而是變換形式后的,這就需要同學(xué)們真正理解導(dǎo)數(shù)的定義,要記住幾個關(guān)鍵點(diǎn):

  1、在某點(diǎn)的領(lǐng)域范圍內(nèi)。

  2、趨近于這一點(diǎn)時極限存在,極限存在就要保證左右極限都存在,這一點(diǎn)至關(guān)重要,也是01年數(shù)一考查的點(diǎn),我們要從四個選項(xiàng)中找出表示左導(dǎo)數(shù)和右導(dǎo)數(shù)都存在且相等的選項(xiàng)。

  3、導(dǎo)數(shù)定義中一定要出現(xiàn)這一點(diǎn)的函數(shù)值,如果已知告訴等于零,那極限表達(dá)式中就可以不出現(xiàn),否就不能推出在這一點(diǎn)可導(dǎo),請同學(xué)們記清楚了。

  4、掌握導(dǎo)數(shù)定義的不同書寫形式。

  ▶導(dǎo)數(shù)定義相關(guān)計(jì)算

  已知某點(diǎn)處導(dǎo)數(shù)存在,計(jì)算極限,這需要掌握導(dǎo)數(shù)的廣義化形式,還要注意是在這一點(diǎn)處導(dǎo)數(shù)存在的前提下,否則是不一定成立的。

  ▶導(dǎo)數(shù)、可微與連續(xù)的關(guān)系

  函數(shù)在一點(diǎn)處可導(dǎo)與可微是等價的,可以推出在這一點(diǎn)處是連續(xù)的,反過來則是不成立的,相信這一點(diǎn)大家都很清楚,而我要提醒大家的是可導(dǎo)推連續(xù)的逆否命題:函數(shù)在一點(diǎn)處不連續(xù),則在一點(diǎn)處不可導(dǎo)。這也常常應(yīng)用在做題中。

  ▶導(dǎo)數(shù)的計(jì)算

  導(dǎo)數(shù)的計(jì)算可以說在每一年的考研數(shù)學(xué)中都會涉及到,而且形式不一,考查的方法也不同。要能很好的掌握不同類型題,首先就需要我們把基本的導(dǎo)數(shù)計(jì)算弄明白:

  1、基本的求導(dǎo)公式。指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)和反三角函數(shù)這些基本的初等函數(shù)導(dǎo)數(shù)都是需要記住的,這也告訴我們在對函數(shù)變形到什么形式的時候就可以直接代公式,也為后面學(xué)習(xí)不定積分和定積分打基礎(chǔ)。

  2、求導(dǎo)法則。求導(dǎo)法則這里無非是四則運(yùn)算,復(fù)合函數(shù)求導(dǎo)和反函數(shù)求導(dǎo),要求四則運(yùn)算記住求導(dǎo)公式;復(fù)合函數(shù)要會寫出它的復(fù)合過程,按照復(fù)合函數(shù)的求導(dǎo)法則一次求導(dǎo)就可以了,也是通過這個復(fù)合函數(shù)求導(dǎo)法則,我們可求出很多函數(shù)的導(dǎo)數(shù);反函數(shù)求導(dǎo)法則為我們開辟了一條新路,建立函數(shù)與其反函數(shù)之間的導(dǎo)數(shù)關(guān)系,從而也使我們得到反三角函數(shù)求導(dǎo)公式,這些公式都將要列為基本導(dǎo)數(shù)公式,也要很好的理解并掌握反函數(shù)的求導(dǎo)思路,在13年數(shù)二的考試中相應(yīng)的考過,請同學(xué)們注意。

  3、常見考試類型的求導(dǎo)。通常在考研中出現(xiàn)四種類型:冪指函數(shù)、隱函數(shù)、參數(shù)方程和抽象函數(shù)。這四種類型的求導(dǎo)方法要熟悉,并且可以解決他們之間的綜合題,有時候也會與變現(xiàn)積分求導(dǎo)結(jié)合,94年,96年,08年和10年都查了參數(shù)方程和變現(xiàn)積分綜合的題目。

  ▶高階導(dǎo)數(shù)計(jì)算

  高階導(dǎo)數(shù)的計(jì)算在歷年考試出現(xiàn)過,比如03年,07年,10年,都以填空題考查的,00年是一道解答題。需要同學(xué)們記住幾個常見的高階導(dǎo)數(shù)公式,將其他函數(shù)都轉(zhuǎn)化成我們這幾種常見的函數(shù),代入公式就可以了,也有通過求一階導(dǎo)數(shù),二階,三階的方法來找出他們之間關(guān)系的。這里還有一種題型就是結(jié)合萊布尼茨公式求高階導(dǎo)數(shù)的,00年出的題目就是考察的這兩個知識點(diǎn)。

責(zé)編:zhanglu

報考指南

  • 考研真題
  • 模擬試題
  • 考研備考
  • 學(xué)歷考試
  • 會計(jì)考試
  • 建筑工程
  • 職業(yè)資格
  • 醫(yī)藥考試
  • 外語考試
  • 外貿(mào)考試
  • 計(jì)算機(jī)類
宜昌市| 天水市| 彰化县| 郸城县| 哈尔滨市| 福建省| 宁海县| 栾城县| 江孜县| 阳朔县| 三明市| 乌兰察布市| 天祝| 天长市| 莎车县| 土默特右旗| 甘泉县| 唐海县| 全椒县| 江口县| 琼结县| 香河县| 东乡县| 福建省| 巩义市| 襄城县| 沅陵县| 茌平县| 辽宁省| 云林县| 西贡区| 博乐市| 彰化县| 华坪县| 赤壁市| 阳新县| 买车| 平原县| 思茅市| 阜平县| 平定县|