华南俳烁实业有限公司

考研

各地資訊
當(dāng)前位置:華課網(wǎng)校 >> 考研 >> 考試大綱 >> 數(shù)學(xué)大綱 >> 文章內(nèi)容

2017年數(shù)學(xué)(農(nóng))考試大綱

來(lái)源:華課網(wǎng)校  [2016年8月28日]  【

  考試科目:高等數(shù)學(xué)、線(xiàn)性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)

考試形式和試卷結(jié)構(gòu)

  一、試卷滿(mǎn)分及考試時(shí)間

  試卷滿(mǎn)分為150分,考試時(shí)間為180分鐘.

  二、答題方式

  答題方式為閉卷、筆試.

  三、試卷內(nèi)容結(jié)構(gòu)

  高等數(shù)學(xué)  約56%

  線(xiàn)性代數(shù)  約22%

  概率論與數(shù)理統(tǒng)計(jì) 約22%

  四、試卷題型結(jié)構(gòu)

  單項(xiàng)選擇題選題 8小題,每小題4分,共32分

  填空題 6小題,每小題4分,共24分

  解答題(包括證明題) 9小題,共94分

高等數(shù)學(xué)

  一、函數(shù)、極限、連續(xù)

  考試內(nèi)容

  函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立

  數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限和右極限 無(wú)窮小量和無(wú)窮大量的概念及其關(guān)系 無(wú)窮小量的性質(zhì)及無(wú)窮小量的比較 極限的四則運(yùn)算 極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個(gè)重要極限:

  函數(shù)連續(xù)的概念 函數(shù)間斷點(diǎn)的類(lèi)型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)

  考試要求

  1.理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問(wèn)題的函數(shù)關(guān)系.

  2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.

  3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.

  4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.

  5.了解數(shù)列極限和函數(shù)極限(包括左極限與右極限)的概念.

  6.了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限的四則運(yùn)算法則,掌握利用兩個(gè)重要極限求極限的方法.

  7.理解無(wú)窮小量的概念和基本性質(zhì),掌握無(wú)窮小量的比較方法.了解無(wú)窮大量的概念及其與無(wú)窮小量的關(guān)系.

  8.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類(lèi)型.

  9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì).

  二、一元函數(shù)微分學(xué)

  考試內(nèi)容

  導(dǎo)數(shù)和微分的概念 導(dǎo)數(shù)的幾何意義和經(jīng)濟(jì)意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系  平面曲線(xiàn)的切線(xiàn)與法線(xiàn) 導(dǎo)數(shù)和微分的四則運(yùn)算 基本初等函數(shù)的導(dǎo)數(shù) 復(fù)合函數(shù)和隱函數(shù)的微分法 高階導(dǎo)數(shù) 微分中值定理 洛必達(dá)(L'Hospital)法則 函數(shù)單調(diào)性的判別 函數(shù)的極值 函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線(xiàn) 函數(shù)的最大值與最小值

  考試要求

  1.理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線(xiàn)的切線(xiàn)方程和法線(xiàn)方程.

  2.掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求反函數(shù)與隱函數(shù)的導(dǎo)數(shù).

  3.了解高階導(dǎo)數(shù)的概念,掌握二階導(dǎo)數(shù)的求法.

  4.了解微分的概念以及導(dǎo)數(shù)與微分之間的關(guān)系,會(huì)求函數(shù)的微分.

  5.理解羅爾(Rolle)定理、拉格朗日( Lagrange)中值定理,掌握這兩個(gè)定理的簡(jiǎn)單應(yīng)用.

  6.會(huì)用洛必達(dá)法則求極限.

  7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及其應(yīng)用.

  三、一元函數(shù)積分學(xué)

  考試內(nèi)容

  原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)及其導(dǎo)數(shù) 牛頓-萊布尼茨(Newton- Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 反常(廣義)積分 定積分的應(yīng)用

  考試要求

  1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法與分部積分法.

  2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會(huì)求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式,以及定積分的換元積分法和分部積分法.

  3.會(huì)利用定積分計(jì)算平面圖形的面積和旋轉(zhuǎn)體的體積.

  4.了解無(wú)窮區(qū)間上的反常積分的概念,會(huì)計(jì)算無(wú)窮區(qū)間上的反常積分.

  四、多元函數(shù)微積分學(xué)

  考試內(nèi)容

  多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限與連續(xù)的概念 多元函數(shù)偏導(dǎo)數(shù)的概念與計(jì)算 多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法 二階偏導(dǎo)數(shù) 全微分 多元函數(shù)的極值和條件極值 二重積分的概念、基本性質(zhì)和計(jì)算

  考試要求

  1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.

  2.了解二元函數(shù)的極限與連續(xù)的概念.

  3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù).

  4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件.

  5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)).

  五、常微分方程

  考試內(nèi)容

  常微分方程的基本概念 變量可分離的微分方程 一階線(xiàn)性微分方程

  考試要求

  1.了解微分方程及其階、解、通解、初始條件和特解等概念.

  2.掌握變量可分離的微分方程和一階線(xiàn)性微分方程的求解方法.

  3.會(huì)解二階常系數(shù)齊次線(xiàn)性微分方程.

  4.了解線(xiàn)性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)的二階常系數(shù)非齊次線(xiàn)性微分方程.

  5.了解差分與差分方程及其通解與特解等概念.

  6.了解一階常系數(shù)線(xiàn)性差分方程的求解方法.

  7.會(huì)用微分方程求解簡(jiǎn)單的經(jīng)濟(jì)應(yīng)用問(wèn)題.

線(xiàn)性代數(shù)

  一、行列式

  考試內(nèi)容

  行列式的概念和基本性質(zhì) 行列式按行(列)展開(kāi)定理

  考試要求

  1.了解行列式的概念,掌握行列式的性質(zhì).

  2.會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開(kāi)定理計(jì)算行列式.

  二、矩陣

  考試內(nèi)容

  矩陣的概念 矩陣的線(xiàn)性運(yùn)算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價(jià)

  考試要求

  1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對(duì)角矩陣、三角矩陣的定義及性質(zhì),了解對(duì)稱(chēng)矩陣、反對(duì)稱(chēng)矩陣及正交矩陣等的定義和性質(zhì).

  2.掌握矩陣的線(xiàn)性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì).

  3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì),以及矩陣可逆的充分必要條件,了解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣.

  4.了解矩陣的初等變換和初等矩陣及矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法.

  三、向量

  考試內(nèi)容

  向量的概念 向量的線(xiàn)性組合與線(xiàn)性表示 向量組的線(xiàn)性相關(guān)與線(xiàn)性無(wú)關(guān) 向量組的極大線(xiàn)性無(wú)關(guān)組 等價(jià)向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系

  考試要求

  1.了解向量的概念,掌握向量的加法和數(shù)乘運(yùn)算法則.

  2.理解向量的線(xiàn)性組合與線(xiàn)性表示、向量組線(xiàn)性相關(guān)、線(xiàn)性無(wú)關(guān)等概念,掌握向量組線(xiàn)性相關(guān)、線(xiàn)性無(wú)關(guān)的有關(guān)性質(zhì)及判別法.

  3.理解向量組的極大線(xiàn)性無(wú)關(guān)組和秩的概念,會(huì)求向量組的極大線(xiàn)性無(wú)關(guān)組及秩.

  4.理解向量組等價(jià)的概念,了解矩陣的秩與其行(列)向量組的秩之間的關(guān)系.

  四、線(xiàn)性方程組

  考試內(nèi)容

  線(xiàn)性方程組的克拉默(Cramer)法則 線(xiàn)性方程組有解和無(wú)解的判定 齊次線(xiàn)性方程組的基礎(chǔ)解系和通解 非齊次線(xiàn)性方程組的解與相應(yīng)的齊次線(xiàn)性方程組的解之間的關(guān)系 非齊次線(xiàn)性方程組的通解

  考試要求

  1.會(huì)用克拉默法則解線(xiàn)性方程組.

  2.掌握非齊次線(xiàn)性方程組有解和無(wú)解的判定方法.

  3.理解齊次線(xiàn)性方程組的基礎(chǔ)解系的概念,掌握齊次線(xiàn)性方程組的基礎(chǔ)解系和通解的求法.

  4.了解非齊次線(xiàn)性方程組解的結(jié)構(gòu)及通解的概念.

  5.掌握用初等行變換求解線(xiàn)性方程組的方法.

  五、矩陣的特征值和特征向量

  考試內(nèi)容

  矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對(duì)角化的充分必要條件及相似對(duì)角矩陣 實(shí)對(duì)稱(chēng)矩陣的特征值和特征向量及相似對(duì)角矩陣

  考試要求

  1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法.

  2.了解矩陣相似的概念和相似矩陣的性質(zhì),了解矩陣可相似對(duì)角化的充分必要條件,會(huì)將矩陣化為相似對(duì)角矩陣.

  3.了解實(shí)對(duì)稱(chēng)矩陣的特征值和特征向量的性質(zhì).

概率論與數(shù)理統(tǒng)計(jì)

  一、隨機(jī)事件和概率

  考試內(nèi)容

  隨機(jī)事件與樣本空間 事件的關(guān)系與運(yùn)算 概率的基本性質(zhì) 古典型概率 條件概率 概率的基本公式 事件的獨(dú)立性 獨(dú)立重復(fù)試驗(yàn)

  考試要求

  1.了解樣本空間的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系及運(yùn)算.

  2.理解概率、條件概率的概念,掌握概率的基本性質(zhì),會(huì)計(jì)算古典型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式.

  3.理解事件的獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計(jì)算;理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計(jì)算有關(guān)事件概率的方法.

  二、隨機(jī)變量及其分布

  考試內(nèi)容

  隨機(jī)變量 隨機(jī)變量分布函數(shù)的概念及其性質(zhì) 離散型隨機(jī)變量的概率分布 連續(xù)型隨機(jī)變量的概率密度 常見(jiàn)隨機(jī)變量的分布 隨機(jī)變量函數(shù)的分布

  考試要求

  1.理解隨機(jī)變量的概念,理解分布函數(shù) 

 

的概念及性質(zhì),會(huì)計(jì)算與隨機(jī)變量相聯(lián)系的事件的概率.

 

 

  4.會(huì)求隨機(jī)變量函數(shù)的分布.

  三、二維隨機(jī)變量的分布

  考試內(nèi)容

  二維隨機(jī)變量及其分布 二維離散型隨機(jī)變量的概率分布和邊緣分布 二維連續(xù)型隨機(jī)變量的概率密度和邊緣概率密度 隨機(jī)變量的獨(dú)立性和不相關(guān)性 常見(jiàn)二維隨機(jī)變量的分布 兩個(gè)隨機(jī)變量簡(jiǎn)單函數(shù)的分布

  考試要求

  1.理解二維隨機(jī)變量的概念,理解二維隨機(jī)變量的分布的概念和性質(zhì),理解二維離散型隨機(jī)變量的概率分布和邊緣分布,理解二維連續(xù)型隨機(jī)變量的概率密度和邊緣密度,會(huì)求與二維離散型隨機(jī)變量相關(guān)事件的概率.

  2.理解隨機(jī)變量的獨(dú)立性及不相關(guān)性的概念,了解隨機(jī)變量相互獨(dú)立的條件.

  4.會(huì)求兩個(gè)獨(dú)立隨機(jī)變量和的分布.

  四、隨機(jī)變量的數(shù)字特征

  考試內(nèi)容

  隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì) 隨機(jī)變量簡(jiǎn)單函數(shù)的數(shù)學(xué)期望 矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)

  考試要求

  1.理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會(huì)運(yùn)用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征.

  2.會(huì)求隨機(jī)變量簡(jiǎn)單函數(shù)的數(shù)學(xué)期望.

  五、大數(shù)定律和中心極限定理

  考試內(nèi)容

 

  考試要求

  1.了解切比雪夫不等式.

  2.了解切比雪夫大數(shù)定律和伯努利大數(shù)定律.

  3.了解棣莫弗-拉普拉斯定理(二項(xiàng)分布以正態(tài)分布為極限分布)和列維-林德伯格定理(獨(dú)立同分布隨機(jī)變量序列的中心極限定理).

  六、數(shù)理統(tǒng)計(jì)的基本概念

  考試內(nèi)容

  考試要求

  1.了解總體、簡(jiǎn)單隨機(jī)樣本、統(tǒng)計(jì)量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為

  3.了解正態(tài)總體的常用抽樣分布.

責(zé)編:tanhuifang

報(bào)考指南

  • 考研真題
  • 模擬試題
  • 考研備考
  • 學(xué)歷考試
  • 會(huì)計(jì)考試
  • 建筑工程
  • 職業(yè)資格
  • 醫(yī)藥考試
  • 外語(yǔ)考試
  • 外貿(mào)考試
  • 計(jì)算機(jī)類(lèi)
平远县| 汉沽区| 西贡区| 隆安县| 梁河县| 搜索| 五常市| 高雄市| 博兴县| 德化县| 辉南县| 扶余县| 大埔县| 浙江省| 邵阳县| 高清| 黎川县| 永清县| 建德市| 宁陕县| 滦南县| 浮山县| 乐平市| 阜新市| 高安市| 江西省| 老河口市| 汶川县| 汕尾市| 南安市| 酉阳| 平昌县| 太湖县| 上高县| 无锡市| 邵东县| 宜君县| 饶河县| 财经| 南投县| 海兴县|