1、計算下列雙代號網(wǎng)絡圖的時間參數(shù):
解:
2、已知某雙代號網(wǎng)絡計劃如圖所示。圖中箭線上方為工作的資源強度,箭線下方為工作的持續(xù)時間(天)。若資源限量RA=15,請對其進行“資源有限---工期最短”的優(yōu)化。
解:
(1)按直接法繪制時標網(wǎng)絡圖,計算網(wǎng)絡計劃每個時間單位的資源需要量,并會出資源需要量動態(tài)曲線:
(2)從計劃開始日期起,逐個檢查每個時段,經(jīng)檢查發(fā)現(xiàn),第一個時段[0,3]存在資源需要量超過資源限量,故應先調(diào)整該時段。
(3)在時段[0,3]有工作1-3、1-2及1-4三項工作平行作業(yè),利用公式計算ΔTA,B值,其結(jié)果列表如下:
序號 |
代號 |
EF |
LS |
ΔT12 |
ΔT13 |
ΔT21 |
ΔT23 |
ΔT31 |
ΔT32 |
選擇min {ΔTA,B} |
1 |
1-3 |
5 |
6 |
5 |
-2 |
- |
- |
- |
- |
ΔT2,3 ΔT3,1 |
2 |
1-2 |
4 |
0 |
- |
- |
-2 |
-3 |
- |
- | |
3 |
1-4 |
3 |
7 |
- |
- |
- |
- |
-3 |
3 |
以上述計算可以看出,方案一:將1-4安排在1-2后;方案二:將1-3安排在1-4后對工期都無影響,經(jīng)分析,使用第一方案,第一時間段需要量仍超限量;按第二方案調(diào)整后,第一時間段需要量不超限量,因此,將工序1-3安排在1-4后進行,調(diào)整網(wǎng)絡計劃如下圖:
(4)從上圖可以看出,在第二時段[3,4]存在資源超限量,故對該時段進行調(diào)整。
(5)在第二時段[3,4]有工序1-3、1-2兩項工作,利用公式計算ΔTA,B值,其結(jié)果列表如下:
序號 |
代號 |
EF |
LS |
ΔT12 |
ΔT21 |
選擇min {ΔTA,B} |
1 |
1-3 |
8 |
6 |
8 |
- |
ΔT2,1 |
2 |
1-2 |
4 |
0 |
- |
-2 |
將1-3安排在1-2后進行,工期不延長,調(diào)整后的網(wǎng)絡計劃如下圖:
(6)在第三時段[4,9]內(nèi),存在資源超限量,故應繼續(xù)調(diào)整該段,在此段內(nèi),有工序1-3及2-4二項平行工序,利用公式計算ΔTA,B值,其結(jié)果列表如下:
序號 |
代號 |
EF |
LS |
ΔT12 |
ΔT21 |
選擇min {ΔTA,B} |
1 |
1-3 |
9 |
6 |
5 |
- |
ΔT2,1 |
2 |
2-4 |
10 |
4 |
- |
4 |
將1-3安排在2-4后進行,工期延長較少,調(diào)整后的網(wǎng)絡計劃如下圖:
(7)到此為止,各段資源需要量均未超出資源限量,則“資源有限---工期最短”的優(yōu)化已完成,上圖所示方案為最優(yōu)方案,其相應工期為18天。
。 。 。 |
結(jié)構(gòu)工程師考試知多少?搶先領取資料慢慢看! |
。 。 。 | |||
一級結(jié)構(gòu)題庫 | |||||
加群即享 |