縱觀近幾年的高考數(shù)學(xué)試卷,我們會發(fā)現(xiàn)與雙曲線相關(guān)的題型幾乎年年都會考到,屬于重要考點(diǎn)。題型也比較豐富,如有選擇題、填空題、解答題的形式;考查的知識點(diǎn)有雙曲線的定義、標(biāo)準(zhǔn)方程、漸近線和離心率、雙曲線的性質(zhì)、直線與雙曲線的位置關(guān)系等等。
跟雙曲線有關(guān)的選擇題或填空題一般分值為4分或5分,解答題甚至10分題目都會有。因此,考生對雙曲線的學(xué)習(xí)應(yīng)加以重視。
要想學(xué)好雙曲線,我們可以“借用”其他幾個(gè)圓錐曲線內(nèi)容,如學(xué)習(xí)雙曲線的定義、標(biāo)準(zhǔn)方程和幾何性質(zhì)時(shí),可以對橢圓的定義、標(biāo)準(zhǔn)方程和幾何性質(zhì)進(jìn)行類比,找出它們的不同點(diǎn),對比記憶,加深理解。
橢圓的定義:
平面內(nèi)到兩個(gè)定點(diǎn)F1,F(xiàn)2的距離之和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫做橢圓,這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)F1,F(xiàn)2間的距離叫做橢圓的焦距。
雙曲線的定義:
平面內(nèi)與定點(diǎn)F1、F2的距離的差的絕對值等于常數(shù)(小于|F1F2|)的點(diǎn)的軌跡叫做雙曲線,這兩個(gè)定點(diǎn)叫做雙曲線的焦點(diǎn),兩焦點(diǎn)間的距離叫做雙曲線的焦距。
從橢圓和雙曲線的定義,我們可以看到兩種知識的聯(lián)系和區(qū)別,這也更好幫助我們理解和掌握好知識內(nèi)容。如要注意“常數(shù)”所滿足的條件以及絕對值所起的作用,要注意與橢圓中的有關(guān)式子進(jìn)行比較,并加以區(qū)別。
典型例題分析1:
已知雙曲線的方程是16x2-9y2=144.
(1)求雙曲線的焦點(diǎn)坐標(biāo)、離心率和漸近線方程;
(2)設(shè)F1和F2是雙曲線的左、右焦點(diǎn),點(diǎn)P在雙曲線上,且|PF1|·|PF2|=32,求∠F1PF2的大小.
解:(1)由16x2-9y2=144得x2/9-y2/16=1,
所以a=3,b=4,c=5,
所以焦點(diǎn)坐標(biāo)F1(-5,0),F(xiàn)2(5,0),離心率e=5/3,漸近線方程為y=±4x/3.
(2)由雙曲線的定義可知||PF1|-|PF2||=6,
cos ∠F1PF2=(|PF1|2+|PF2|2-|F1F2|2)/2|PF1||PF2|
={(|PF1|2-|PF2|)2+2|PF1||PF2|-|F1F2|2}/2|PF1||PF2|
=(36+64-100)/64=0,
則∠F1PF2=90°.
要想正確解決雙曲線的問題,首先學(xué)好雙曲線的基本概念、知識點(diǎn)等等,如求雙曲線方程時(shí),若不能確定焦點(diǎn)位置,要注意分類討論.若焦點(diǎn)所在的坐標(biāo)軸不同,其漸近線方程的形式也不同。
區(qū)分雙曲線與橢圓中a、b、c的關(guān)系,在橢圓中a2=b2+c2,而在雙曲線中c2=a2+b2.雙曲線的離心率e>1;橢圓的離心率e∈(0,1)。
典型例題分析2:
設(shè)F1,F(xiàn)2是雙曲線x2-y2/24=1的兩個(gè)焦點(diǎn),P是雙曲線上的一點(diǎn),且3|PF1|=4|PF2|,則△PF1F2的面積等于 .
解析:由P是雙曲線上的一點(diǎn)和3|PF1|=4|PF2|可知,|PF1|-|PF2|=2,解得|PF1|=8,|PF2|=6.又|F1F2|=2c=10,所以△PF1F2為直角三角形,所以△PF1F2的面積S=(6×8)/2=24。
雙曲線作為高考的熱點(diǎn)內(nèi)容之一,在每年全國各地的高考試卷中,都會有相關(guān)的題型出現(xiàn)。一些復(fù)雜題型會以直線與雙曲線位置關(guān)系為背景的求雙曲線方程問題,要利用點(diǎn)差法處理弦中點(diǎn)與斜率問題等。
應(yīng)用雙曲線的定義需注意的問題:
在雙曲線的定義中要注意雙曲線上的點(diǎn)(動點(diǎn))具備的幾何條件,即“到兩定點(diǎn)(焦點(diǎn))的距離之差的絕對值為一常數(shù),且該常數(shù)必須小于兩定點(diǎn)的距離”。若定義中的“絕對值”去掉,點(diǎn)的軌跡是雙曲線的一支。
典型例題分析3:
1
2
3
謹(jǐn)記:雙曲線方程的求法
1、若不能明確焦點(diǎn)在哪條坐標(biāo)軸上,設(shè)雙曲線方程為mx2+ny2=1(mn<0);
2、與雙曲線x2/a2-y2/b2=1有共同漸近線的雙曲線方程可設(shè)為x2/a2-y2/b2=λ(λ≠0);
3、若已知漸近線方程為mx+ny=0,則雙曲線方程可設(shè)為m2x2-n2y2=λ(λ≠0)。
直線與雙曲線交于一點(diǎn)時(shí),不一定相切,如:當(dāng)直線與雙曲線的漸近線平行時(shí),直線與雙曲線相交于一點(diǎn),但不是相切;反之,當(dāng)直線與雙曲線相切時(shí),直線與雙曲線僅有一個(gè)交點(diǎn)。
典型例題分析3:
1
2
3
謹(jǐn)記:雙曲線方程的求法
1、若不能明確焦點(diǎn)在哪條坐標(biāo)軸上,設(shè)雙曲線方程為mx2+ny2=1(mn<0);
2、與雙曲線x2/a2-y2/b2=1有共同漸近線的雙曲線方程可設(shè)為x2/a2-y2/b2=λ(λ≠0);
3、若已知漸近線方程為mx+ny=0,則雙曲線方程可設(shè)為m2x2-n2y2=λ(λ≠0)。
直線與雙曲線交于一點(diǎn)時(shí),不一定相切,如:當(dāng)直線與雙曲線的漸近線平行時(shí),直線與雙曲線相交于一點(diǎn),但不是相切;反之,當(dāng)直線與雙曲線相切時(shí),直線與雙曲線僅有一個(gè)交點(diǎn)。