1.已知等比數(shù)列{an}滿足a1=3,a1+a3+a5=21,則a3+a5+a7=( )
A.21 B.42 C.63 D.84
2.若a,b是函數(shù)f(x)=x2-px+q(p>0,q>0)的兩個(gè)不同的零點(diǎn),且a,b,-2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等
比數(shù)列,則p+q的值等于( )
A.6 B.7 C.8 D.9
3.設(shè){an}是公比為q的等比數(shù)列.則“q>1”是“{an}為遞增數(shù)列”的( )
A.充分而不必要條件 B.必要而不充分條件
C.充分必要條件 D.既不充分也不必要條件
4.對(duì)任意等比數(shù)列{an},下列說(shuō)法一定正確的是( )
A.a1,a3,a9成等比數(shù)列
B.a2,a3,a6成等比數(shù)列
C.a2,a4,a8成等比數(shù)列
D.a3,a6,a9成等比數(shù)列
5.已知數(shù)列{an}是遞增的等比數(shù)列,a1+a4=9,a2a3=8,則數(shù)列{an}的前n項(xiàng)和等于________.
6.設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,若a1=1,且3S1,2S2,S3成等差數(shù)列,則an=________.
7.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若a2=1,a8=a6+2a4,則a6的值是________.
8.如圖,在等腰直角三角形ABC中,斜邊BC=2.過(guò)點(diǎn)A作BC的垂線,垂足為A1;過(guò)點(diǎn)A1作AC的垂線,垂足為A2;過(guò)點(diǎn)A2作A1C的垂線,
垂足為A3;…,依此類(lèi)推,設(shè)BA=a1,AA1=a2,A1A2=a3,…,A5A6=a7,則a7=________.
9.若等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a10a11+a9a12=2e5,則ln a1+ln a2+…+ln a20=________.
10.已知首項(xiàng)都是1的兩個(gè)數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1-an+1bn+2bn+1bn=0.
(1)令cn=bn,求數(shù)列{cn}的通項(xiàng)公式;
(2)若bn=3n-1,求數(shù)列{an}的前n項(xiàng)和Sn.
參考答案
1.B [設(shè)等比數(shù)列{an}的公比為q,則由a1=3,a1+a3+a5=21得3(1+q2+q4)=21,解得q2=-3(舍去)或q2=2,于是a3+a5+a7=q2
(a1+a3+a5)=2×21=42,故選B.]
2.D [由題意知:a+b=p,ab=q,∵p>0,q>0,∴a>0,b>0.在a,b,-2這三個(gè)數(shù)的6種排序中,成等差數(shù)列的情況有a,b,
-2;b,a,-2;-2,a,b;-2,b,a;成等比數(shù)列的情況有:a,-2,b;b,-2,a.
∴2b=a-2或2a=b-2解之得:b=1或b=4.
∴p=5,q=4,∴p+q=9,故選D.]
3.D [當(dāng)數(shù)列{an}的首項(xiàng)a1<0時(shí),若q>1,則數(shù)列{an}是遞減數(shù)列;當(dāng)數(shù)列{an}的首項(xiàng)a1<0時(shí),要使數(shù)列{an}為遞增數(shù)列,則0<q<1,
所以“q>1”是“數(shù)列{an}為遞增數(shù)列”的既不充分也不必要條件.故選D.]
4.D [由等比數(shù)列的性質(zhì)得,a3·a9=a6≠0,因此a3,a6,a9一定成等比數(shù)列,選D.]
5.2n-1 [由等比數(shù)列性質(zhì)知a2a3=a1a4,又a2a3=8,a1+a4=9,所以聯(lián)立方程a1+a4=9,解得a4=8或a4=1,又?jǐn)?shù)列{an}為遞增數(shù)
列,∴a1=1,a4=8,從而a1q3=8,∴q=2.
∴數(shù)列{an}的前n項(xiàng)和為Sn=1-2=2n-1.]
6.3n-1 [由3S1,2S2,S3成等差數(shù)列知,4S2=3S1+S3,可得a3=3a2,∴公比q=3,故等比數(shù)列通項(xiàng)an=a1qn-1=3n-1.]
7.4 [設(shè)等比數(shù)列{an}的公比為q,q>0.則a8=a6+2a4即為a4q4=a4q2+2a4,解得q2=2(負(fù)值舍去),又a2=1,所以a6=a2q4=4.]
8.4 [由題意知數(shù)列{an}是以首項(xiàng)a1=2,公比q=2的等比數(shù)列,∴a7=a1·q6=2×2=4.]
9.50 [由等比數(shù)列的性質(zhì)可知,a10a11+a9a12=2e5,所以a10·a11=e5,于是ln a1+ln a2+…+ln a20=10ln(a10·a11)=10ln e5=50.]
10.解 (1)因?yàn)?/FONT>anbn+1-an+1bn+2bn+1bn=0,bn≠0(n∈N*),
所以bn+1-bn=2,即cn+1-cn=2.
所以數(shù)列{cn}是以1為首項(xiàng),2為公差的等差數(shù)列,故cn=2n-10.
(2)由bn=3n-1知an=cnbn=(2n-1)3n-1,
于是數(shù)列{an}的前n項(xiàng)和Sn=1×30+3×31+5×32+…+(2n-1)×3n-1,
3Sn=1×31+3×32+…+(2n-3)×3n-1+(2n-1)·3n,
相減得-2Sn=1+2·(31+32+…+3n-1)-(2n-1)·3n=
-2-(2n-2)3n,
所以Sn=(n-1)3n+1.