华南俳烁实业有限公司

單獨(dú)報考
當(dāng)前位置:中華考試網(wǎng) >> 高考 >> 復(fù)習(xí)輔導(dǎo) >> 數(shù)學(xué)輔導(dǎo) >> 2018年高考數(shù)學(xué)備考知識點(diǎn)(2)

2018年高考數(shù)學(xué)備考知識點(diǎn)(2)

中華考試網(wǎng)  2017-12-14  【

2018年高考數(shù)學(xué)備考知識點(diǎn)(2)

  常用的誘導(dǎo)公式有以下幾組:

  公式一:

  設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2kπ+α)=sinα (k∈Z)

  cos(2kπ+α)=cosα (k∈Z)

  tan(2kπ+α)=tanα (k∈Z)

  cot(2kπ+α)=cotα (k∈Z)

  公式二:

  設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α與 -α的三角函數(shù)值之間的關(guān)系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  注意:在做題時,將a看成銳角來做會比較好做。

  誘導(dǎo)公式記憶口訣

  ※規(guī)律總結(jié)※

  上面這些誘導(dǎo)公式可以概括為:

  對于π/2*k ±α(k∈Z)的三角函數(shù)值,

 、佼(dāng)k是偶數(shù)時,得到α的同名函數(shù)值,即函數(shù)名不改變;

  ②當(dāng)k是奇數(shù)時,得到α相應(yīng)的余函數(shù)值,即sin→cos;cos→sin;tan→cot,cot→tan.

  (奇變偶不變)

  然后在前面加上把α看成銳角時原函數(shù)值的符號。

  (符號看象限)

  例如:

  sin(2π-α)=sin(4·π/2-α),k=4為偶數(shù),所以取sinα。

  當(dāng)α是銳角時,2π-α∈(270°,360°),sin(2π-α)<0,符號為“-”。

  所以sin(2π-α)=-sinα

  上述的記憶口訣是:

  奇變偶不變,符號看象限。

  公式右邊的符號為把α視為銳角時,角k·360°+α(k∈Z),-α、180°±α,360°-α

  所在象限的原三角函數(shù)值的符號可記憶

  水平誘導(dǎo)名不變;符號看象限。

  #

  各種三角函數(shù)在四個象限的符號如何判斷,也可以記住口訣“一全正;二正弦(余割);三兩切;四余弦(正割)”.

  這十二字口訣的意思就是說:

  第一象限內(nèi)任何一個角的四種三角函數(shù)值都是“+”;

  第二象限內(nèi)只有正弦是“+”,其余全部是“-”;

  第三象限內(nèi)切函數(shù)是“+”,弦函數(shù)是“-”;

  第四象限內(nèi)只有余弦是“+”,其余全部是“-”.

  上述記憶口訣,一全正,二正弦,三內(nèi)切,四余弦

  #

  還有一種按照函數(shù)類型分象限定正負(fù):

  函數(shù)類型 第一象限 第二象限 第三象限 第四象限

  正弦 ...........+............+............—............—........

  余弦 ...........+............—............—............+........

  正切 ...........+............—............+............—........

  余切 ...........+............—............+............—........

  同角三角函數(shù)基本關(guān)系

  同角三角函數(shù)的基本關(guān)系式

  倒數(shù)關(guān)系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的關(guān)系:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關(guān)系:

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函數(shù)關(guān)系六角形記憶法

  六角形記憶法:(參看圖片或參考資料鏈接)

  構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

  (1)倒數(shù)關(guān)系:對角線上兩個函數(shù)互為倒數(shù);

  (2)商數(shù)關(guān)系:六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個頂點(diǎn)上函數(shù)值的乘積。

  (主要是兩條虛線兩端的三角函數(shù)值的乘積)。由此,可得商數(shù)關(guān)系式。

  (3)平方關(guān)系:在帶有陰影線的三角形中,上面兩個頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。

糾錯評論責(zé)編:jiaojiao95
相關(guān)推薦
熱點(diǎn)推薦»

book.examw.com

  • 中學(xué)英語第一實用閱讀閱讀精選120篇高考
    ¥31.80
  • ¥32.00
  • ¥39.00
  • 品鑒20年最美滿分作文(高考卷)
    ¥29.80
  • ¥39.00
专栏| 莱西市| 兴山县| 石林| 介休市| 庆城县| 同德县| 镇坪县| 中阳县| 青阳县| 紫云| 昌邑市| 三江| 石城县| 都江堰市| 汾西县| 当涂县| 江山市| 娄底市| 定日县| 承德县| 临西县| 通化市| 义马市| 舞阳县| 怀远县| 张北县| 刚察县| 丰顺县| 茶陵县| 都昌县| 连南| 武鸣县| 铜陵市| 青铜峡市| 咸宁市| 商都县| 兴安县| 白沙| 观塘区| 濉溪县|