三、解答題
11.數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=(an-1),數(shù)列{bn}滿足bn=bn-1-(n≥2),且b1=3.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足cn=an·log2(bn+1),其前n項(xiàng)和為Tn,求Tn.
解析:(1)對(duì)于數(shù)列{an}有Sn=(an-1),
Sn-1=(an-1-1)(n≥2),
由-,得an=(an-an-1),即an=3an-1,
當(dāng)n=1時(shí),S1=(a1-1)=a1,解得a1=3,
則an=a1·qn-1=3·3n-1=3n.
對(duì)于數(shù)列{bn},有bn=bn-1-(n≥2),
可得bn+1=bn-1+,即=.
bn+1=(b1+1)n-1=4n-1=42-n,
即bn=42-n-1.
(2)由(1)可知
cn=an·log2(bn+1)=3n·log2 42-n
=3n·log2 24-2n=3n(4-2n).
Tn=2·31+0·32+(-2)·33+…+(4-2n)·3n,
3Tn=2·32+0·33+…+(6-2n)·3n+(4-2n)·3n+1,
由-,得
-2Tn=2·3+(-2)·32+(-2)·33+…+(-2)·3n-(4-2n)·3n+1
=6+(-2)(32+33+…+3n)-(4-2n)·3n+1,
則Tn=-3++(2-n)·3n+1
=-+·3n+1.
12.已知數(shù)列{an}為等比數(shù)列,其前n項(xiàng)和為Sn,已知a1+a4=-,且對(duì)于任意的nN+有Sn,Sn+2,Sn+1成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知bn=n(nN+),記Tn=+++…+,若(n-1)2≤m(Tn-n-1)對(duì)于n≥2恒成立,求實(shí)數(shù)m的范圍.
解析:(1)設(shè)公比為q,
S1,S3,S2成等差數(shù)列,
2S3=S1+S2,
2a1(1+q+q2)=a1(2+q),得q=-,
又a1+a4=a1(1+q3)=-,
a1=-, an=a1qn-1=n.
(2)∵ bn=n,an=n,
=n·2n,
Tn=1·2+2·22+3·23+…+n·2n,
2Tn=1·22+2·23+3·24+…+(n-1)·2n+n·2n+1,
①-,得-Tn=2+22+23+…+2n-n·2n+1,
Tn=-=(n-1)·2n+1+2.
若(n-1)2≤m(Tn-n-1)對(duì)于n≥2恒成立,
則(n-1)2≤m[(n-1)·2n+1+2-n-1],
(n-1)2≤m(n-1)·(2n+1-1),
m≥.
令f(n)=,f(n+1)-f(n)=-=<0,
f(n)為減函數(shù),
f(n)≤f(2)=.
m≥.即m的取值范圍是.
13.數(shù)列{an}是公比為的等比數(shù)列,且1-a2是a1與1+a3的等比中項(xiàng),前n項(xiàng)和為Sn;數(shù)列{bn}是等差數(shù)列,b1=8,其前n項(xiàng)和Tn滿足Tn=nλ·bn+1(λ為常數(shù),且λ≠1).
(1)求數(shù)列{an}的通項(xiàng)公式及λ的值;
(2)比較+++…+與Sn的大小.
解析:(1)由題意得(1-a2)2=a1(a3+1),
即2=a1,
解得a1=, an=n.
又即
解得或(舍).λ=.
(2)由(1)知Sn=1-n,
Sn=-n+1≥,
又Tn=4n2+4n,
==,
++…+
=1-+-+…+-
=<.
由可知,++…+